MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsdiaglmhm Structured version   Unicode version

Theorem pwsdiaglmhm 17829
Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwsdiaglmhm.y  |-  Y  =  ( R  ^s  I )
pwsdiaglmhm.b  |-  B  =  ( Base `  R
)
pwsdiaglmhm.f  |-  F  =  ( x  e.  B  |->  ( I  X.  {
x } ) )
Assertion
Ref Expression
pwsdiaglmhm  |-  ( ( R  e.  LMod  /\  I  e.  W )  ->  F  e.  ( R LMHom  Y ) )
Distinct variable groups:    x, Y    x, R    x, I    x, B    x, W
Allowed substitution hint:    F( x)

Proof of Theorem pwsdiaglmhm
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsdiaglmhm.b . 2  |-  B  =  ( Base `  R
)
2 eqid 2457 . 2  |-  ( .s
`  R )  =  ( .s `  R
)
3 eqid 2457 . 2  |-  ( .s
`  Y )  =  ( .s `  Y
)
4 eqid 2457 . 2  |-  (Scalar `  R )  =  (Scalar `  R )
5 eqid 2457 . 2  |-  (Scalar `  Y )  =  (Scalar `  Y )
6 eqid 2457 . 2  |-  ( Base `  (Scalar `  R )
)  =  ( Base `  (Scalar `  R )
)
7 simpl 457 . 2  |-  ( ( R  e.  LMod  /\  I  e.  W )  ->  R  e.  LMod )
8 pwsdiaglmhm.y . . 3  |-  Y  =  ( R  ^s  I )
98pwslmod 17742 . 2  |-  ( ( R  e.  LMod  /\  I  e.  W )  ->  Y  e.  LMod )
108, 4pwssca 14912 . . 3  |-  ( ( R  e.  LMod  /\  I  e.  W )  ->  (Scalar `  R )  =  (Scalar `  Y ) )
1110eqcomd 2465 . 2  |-  ( ( R  e.  LMod  /\  I  e.  W )  ->  (Scalar `  Y )  =  (Scalar `  R ) )
12 lmodgrp 17645 . . 3  |-  ( R  e.  LMod  ->  R  e. 
Grp )
13 pwsdiaglmhm.f . . . 4  |-  F  =  ( x  e.  B  |->  ( I  X.  {
x } ) )
148, 1, 13pwsdiagghm 16420 . . 3  |-  ( ( R  e.  Grp  /\  I  e.  W )  ->  F  e.  ( R 
GrpHom  Y ) )
1512, 14sylan 471 . 2  |-  ( ( R  e.  LMod  /\  I  e.  W )  ->  F  e.  ( R  GrpHom  Y ) )
16 simplr 755 . . . 4  |-  ( ( ( R  e.  LMod  /\  I  e.  W )  /\  ( a  e.  ( Base `  (Scalar `  R ) )  /\  b  e.  B )
)  ->  I  e.  W )
171, 4, 2, 6lmodvscl 17655 . . . . . 6  |-  ( ( R  e.  LMod  /\  a  e.  ( Base `  (Scalar `  R ) )  /\  b  e.  B )  ->  ( a ( .s
`  R ) b )  e.  B )
18173expb 1197 . . . . 5  |-  ( ( R  e.  LMod  /\  (
a  e.  ( Base `  (Scalar `  R )
)  /\  b  e.  B ) )  -> 
( a ( .s
`  R ) b )  e.  B )
1918adantlr 714 . . . 4  |-  ( ( ( R  e.  LMod  /\  I  e.  W )  /\  ( a  e.  ( Base `  (Scalar `  R ) )  /\  b  e.  B )
)  ->  ( a
( .s `  R
) b )  e.  B )
2013fvdiagfn 7482 . . . 4  |-  ( ( I  e.  W  /\  ( a ( .s
`  R ) b )  e.  B )  ->  ( F `  ( a ( .s
`  R ) b ) )  =  ( I  X.  { ( a ( .s `  R ) b ) } ) )
2116, 19, 20syl2anc 661 . . 3  |-  ( ( ( R  e.  LMod  /\  I  e.  W )  /\  ( a  e.  ( Base `  (Scalar `  R ) )  /\  b  e.  B )
)  ->  ( F `  ( a ( .s
`  R ) b ) )  =  ( I  X.  { ( a ( .s `  R ) b ) } ) )
2213fvdiagfn 7482 . . . . . 6  |-  ( ( I  e.  W  /\  b  e.  B )  ->  ( F `  b
)  =  ( I  X.  { b } ) )
2322ad2ant2l 745 . . . . 5  |-  ( ( ( R  e.  LMod  /\  I  e.  W )  /\  ( a  e.  ( Base `  (Scalar `  R ) )  /\  b  e.  B )
)  ->  ( F `  b )  =  ( I  X.  { b } ) )
2423oveq2d 6312 . . . 4  |-  ( ( ( R  e.  LMod  /\  I  e.  W )  /\  ( a  e.  ( Base `  (Scalar `  R ) )  /\  b  e.  B )
)  ->  ( a
( .s `  Y
) ( F `  b ) )  =  ( a ( .s
`  Y ) ( I  X.  { b } ) ) )
25 eqid 2457 . . . . 5  |-  ( Base `  Y )  =  (
Base `  Y )
26 simpll 753 . . . . 5  |-  ( ( ( R  e.  LMod  /\  I  e.  W )  /\  ( a  e.  ( Base `  (Scalar `  R ) )  /\  b  e.  B )
)  ->  R  e.  LMod )
27 simprl 756 . . . . 5  |-  ( ( ( R  e.  LMod  /\  I  e.  W )  /\  ( a  e.  ( Base `  (Scalar `  R ) )  /\  b  e.  B )
)  ->  a  e.  ( Base `  (Scalar `  R
) ) )
288, 1, 25pwsdiagel 14913 . . . . . 6  |-  ( ( ( R  e.  LMod  /\  I  e.  W )  /\  b  e.  B
)  ->  ( I  X.  { b } )  e.  ( Base `  Y
) )
2928adantrl 715 . . . . 5  |-  ( ( ( R  e.  LMod  /\  I  e.  W )  /\  ( a  e.  ( Base `  (Scalar `  R ) )  /\  b  e.  B )
)  ->  ( I  X.  { b } )  e.  ( Base `  Y
) )
308, 25, 2, 3, 4, 6, 26, 16, 27, 29pwsvscafval 14910 . . . 4  |-  ( ( ( R  e.  LMod  /\  I  e.  W )  /\  ( a  e.  ( Base `  (Scalar `  R ) )  /\  b  e.  B )
)  ->  ( a
( .s `  Y
) ( I  X.  { b } ) )  =  ( ( I  X.  { a } )  oF ( .s `  R
) ( I  X.  { b } ) ) )
31 id 22 . . . . . 6  |-  ( I  e.  W  ->  I  e.  W )
32 vex 3112 . . . . . . 7  |-  a  e. 
_V
3332a1i 11 . . . . . 6  |-  ( I  e.  W  ->  a  e.  _V )
34 vex 3112 . . . . . . 7  |-  b  e. 
_V
3534a1i 11 . . . . . 6  |-  ( I  e.  W  ->  b  e.  _V )
3631, 33, 35ofc12 6564 . . . . 5  |-  ( I  e.  W  ->  (
( I  X.  {
a } )  oF ( .s `  R ) ( I  X.  { b } ) )  =  ( I  X.  { ( a ( .s `  R ) b ) } ) )
3736ad2antlr 726 . . . 4  |-  ( ( ( R  e.  LMod  /\  I  e.  W )  /\  ( a  e.  ( Base `  (Scalar `  R ) )  /\  b  e.  B )
)  ->  ( (
I  X.  { a } )  oF ( .s `  R
) ( I  X.  { b } ) )  =  ( I  X.  { ( a ( .s `  R
) b ) } ) )
3824, 30, 373eqtrd 2502 . . 3  |-  ( ( ( R  e.  LMod  /\  I  e.  W )  /\  ( a  e.  ( Base `  (Scalar `  R ) )  /\  b  e.  B )
)  ->  ( a
( .s `  Y
) ( F `  b ) )  =  ( I  X.  {
( a ( .s
`  R ) b ) } ) )
3921, 38eqtr4d 2501 . 2  |-  ( ( ( R  e.  LMod  /\  I  e.  W )  /\  ( a  e.  ( Base `  (Scalar `  R ) )  /\  b  e.  B )
)  ->  ( F `  ( a ( .s
`  R ) b ) )  =  ( a ( .s `  Y ) ( F `
 b ) ) )
401, 2, 3, 4, 5, 6, 7, 9, 11, 15, 39islmhmd 17811 1  |-  ( ( R  e.  LMod  /\  I  e.  W )  ->  F  e.  ( R LMHom  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   _Vcvv 3109   {csn 4032    |-> cmpt 4515    X. cxp 5006   ` cfv 5594  (class class class)co 6296    oFcof 6537   Basecbs 14643  Scalarcsca 14714   .scvsca 14715    ^s cpws 14863   Grpcgrp 16179    GrpHom cghm 16390   LModclmod 17638   LMHom clmhm 17791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-fz 11698  df-struct 14645  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-plusg 14724  df-mulr 14725  df-sca 14727  df-vsca 14728  df-ip 14729  df-tset 14730  df-ple 14731  df-ds 14733  df-hom 14735  df-cco 14736  df-0g 14858  df-prds 14864  df-pws 14866  df-mgm 15998  df-sgrp 16037  df-mnd 16047  df-mhm 16092  df-grp 16183  df-minusg 16184  df-ghm 16391  df-mgp 17268  df-ur 17280  df-ring 17326  df-lmod 17640  df-lmhm 17794
This theorem is referenced by:  pwslnmlem1  31200
  Copyright terms: Public domain W3C validator