MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsco2rhm Structured version   Unicode version

Theorem pwsco2rhm 16811
Description: Left composition with a ring homomorphism yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pwsco2rhm.y  |-  Y  =  ( R  ^s  A )
pwsco2rhm.z  |-  Z  =  ( S  ^s  A )
pwsco2rhm.b  |-  B  =  ( Base `  Y
)
pwsco2rhm.a  |-  ( ph  ->  A  e.  V )
pwsco2rhm.f  |-  ( ph  ->  F  e.  ( R RingHom  S ) )
Assertion
Ref Expression
pwsco2rhm  |-  ( ph  ->  ( g  e.  B  |->  ( F  o.  g
) )  e.  ( Y RingHom  Z ) )
Distinct variable groups:    A, g    ph, g    R, g    S, g   
g, Y    B, g    g, F    g, Z
Allowed substitution hint:    V( g)

Proof of Theorem pwsco2rhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsco2rhm.f . . . . 5  |-  ( ph  ->  F  e.  ( R RingHom  S ) )
2 rhmrcl1 16799 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
31, 2syl 16 . . . 4  |-  ( ph  ->  R  e.  Ring )
4 pwsco2rhm.a . . . 4  |-  ( ph  ->  A  e.  V )
5 pwsco2rhm.y . . . . 5  |-  Y  =  ( R  ^s  A )
65pwsrng 16697 . . . 4  |-  ( ( R  e.  Ring  /\  A  e.  V )  ->  Y  e.  Ring )
73, 4, 6syl2anc 656 . . 3  |-  ( ph  ->  Y  e.  Ring )
8 rhmrcl2 16800 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
91, 8syl 16 . . . 4  |-  ( ph  ->  S  e.  Ring )
10 pwsco2rhm.z . . . . 5  |-  Z  =  ( S  ^s  A )
1110pwsrng 16697 . . . 4  |-  ( ( S  e.  Ring  /\  A  e.  V )  ->  Z  e.  Ring )
129, 4, 11syl2anc 656 . . 3  |-  ( ph  ->  Z  e.  Ring )
137, 12jca 529 . 2  |-  ( ph  ->  ( Y  e.  Ring  /\  Z  e.  Ring )
)
14 pwsco2rhm.b . . . . 5  |-  B  =  ( Base `  Y
)
15 rhmghm 16803 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( R  GrpHom  S ) )
161, 15syl 16 . . . . . 6  |-  ( ph  ->  F  e.  ( R 
GrpHom  S ) )
17 ghmmhm 15750 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  F  e.  ( R MndHom  S ) )
1816, 17syl 16 . . . . 5  |-  ( ph  ->  F  e.  ( R MndHom  S ) )
195, 10, 14, 4, 18pwsco2mhm 15494 . . . 4  |-  ( ph  ->  ( g  e.  B  |->  ( F  o.  g
) )  e.  ( Y MndHom  Z ) )
20 rnggrp 16640 . . . . . 6  |-  ( Y  e.  Ring  ->  Y  e. 
Grp )
217, 20syl 16 . . . . 5  |-  ( ph  ->  Y  e.  Grp )
22 rnggrp 16640 . . . . . 6  |-  ( Z  e.  Ring  ->  Z  e. 
Grp )
2312, 22syl 16 . . . . 5  |-  ( ph  ->  Z  e.  Grp )
24 ghmmhmb 15751 . . . . 5  |-  ( ( Y  e.  Grp  /\  Z  e.  Grp )  ->  ( Y  GrpHom  Z )  =  ( Y MndHom  Z
) )
2521, 23, 24syl2anc 656 . . . 4  |-  ( ph  ->  ( Y  GrpHom  Z )  =  ( Y MndHom  Z
) )
2619, 25eleqtrrd 2518 . . 3  |-  ( ph  ->  ( g  e.  B  |->  ( F  o.  g
) )  e.  ( Y  GrpHom  Z ) )
27 eqid 2441 . . . . 5  |-  ( (mulGrp `  R )  ^s  A )  =  ( (mulGrp `  R )  ^s  A )
28 eqid 2441 . . . . 5  |-  ( (mulGrp `  S )  ^s  A )  =  ( (mulGrp `  S )  ^s  A )
29 eqid 2441 . . . . 5  |-  ( Base `  ( (mulGrp `  R
)  ^s  A ) )  =  ( Base `  (
(mulGrp `  R )  ^s  A ) )
30 eqid 2441 . . . . . . 7  |-  (mulGrp `  R )  =  (mulGrp `  R )
31 eqid 2441 . . . . . . 7  |-  (mulGrp `  S )  =  (mulGrp `  S )
3230, 31rhmmhm 16802 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) )
331, 32syl 16 . . . . 5  |-  ( ph  ->  F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) )
3427, 28, 29, 4, 33pwsco2mhm 15494 . . . 4  |-  ( ph  ->  ( g  e.  (
Base `  ( (mulGrp `  R )  ^s  A ) )  |->  ( F  o.  g ) )  e.  ( ( (mulGrp `  R )  ^s  A ) MndHom 
( (mulGrp `  S
)  ^s  A ) ) )
35 eqid 2441 . . . . . . . . 9  |-  ( Base `  R )  =  (
Base `  R )
365, 35pwsbas 14421 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  A  e.  V )  ->  (
( Base `  R )  ^m  A )  =  (
Base `  Y )
)
373, 4, 36syl2anc 656 . . . . . . 7  |-  ( ph  ->  ( ( Base `  R
)  ^m  A )  =  ( Base `  Y
) )
3837, 14syl6eqr 2491 . . . . . 6  |-  ( ph  ->  ( ( Base `  R
)  ^m  A )  =  B )
3930rngmgp 16641 . . . . . . . 8  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
403, 39syl 16 . . . . . . 7  |-  ( ph  ->  (mulGrp `  R )  e.  Mnd )
4130, 35mgpbas 16587 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  (mulGrp `  R
) )
4227, 41pwsbas 14421 . . . . . . 7  |-  ( ( (mulGrp `  R )  e.  Mnd  /\  A  e.  V )  ->  (
( Base `  R )  ^m  A )  =  (
Base `  ( (mulGrp `  R )  ^s  A ) ) )
4340, 4, 42syl2anc 656 . . . . . 6  |-  ( ph  ->  ( ( Base `  R
)  ^m  A )  =  ( Base `  (
(mulGrp `  R )  ^s  A ) ) )
4438, 43eqtr3d 2475 . . . . 5  |-  ( ph  ->  B  =  ( Base `  ( (mulGrp `  R
)  ^s  A ) ) )
4544mpteq1d 4370 . . . 4  |-  ( ph  ->  ( g  e.  B  |->  ( F  o.  g
) )  =  ( g  e.  ( Base `  ( (mulGrp `  R
)  ^s  A ) )  |->  ( F  o.  g ) ) )
46 eqidd 2442 . . . . 5  |-  ( ph  ->  ( Base `  (mulGrp `  Y ) )  =  ( Base `  (mulGrp `  Y ) ) )
47 eqidd 2442 . . . . 5  |-  ( ph  ->  ( Base `  (mulGrp `  Z ) )  =  ( Base `  (mulGrp `  Z ) ) )
48 eqid 2441 . . . . . . . 8  |-  (mulGrp `  Y )  =  (mulGrp `  Y )
49 eqid 2441 . . . . . . . 8  |-  ( Base `  (mulGrp `  Y )
)  =  ( Base `  (mulGrp `  Y )
)
50 eqid 2441 . . . . . . . 8  |-  ( +g  `  (mulGrp `  Y )
)  =  ( +g  `  (mulGrp `  Y )
)
51 eqid 2441 . . . . . . . 8  |-  ( +g  `  ( (mulGrp `  R
)  ^s  A ) )  =  ( +g  `  (
(mulGrp `  R )  ^s  A ) )
525, 30, 27, 48, 49, 29, 50, 51pwsmgp 16700 . . . . . . 7  |-  ( ( R  e.  Ring  /\  A  e.  V )  ->  (
( Base `  (mulGrp `  Y
) )  =  (
Base `  ( (mulGrp `  R )  ^s  A ) )  /\  ( +g  `  (mulGrp `  Y )
)  =  ( +g  `  ( (mulGrp `  R
)  ^s  A ) ) ) )
533, 4, 52syl2anc 656 . . . . . 6  |-  ( ph  ->  ( ( Base `  (mulGrp `  Y ) )  =  ( Base `  (
(mulGrp `  R )  ^s  A ) )  /\  ( +g  `  (mulGrp `  Y ) )  =  ( +g  `  (
(mulGrp `  R )  ^s  A ) ) ) )
5453simpld 456 . . . . 5  |-  ( ph  ->  ( Base `  (mulGrp `  Y ) )  =  ( Base `  (
(mulGrp `  R )  ^s  A ) ) )
55 eqid 2441 . . . . . . . 8  |-  (mulGrp `  Z )  =  (mulGrp `  Z )
56 eqid 2441 . . . . . . . 8  |-  ( Base `  (mulGrp `  Z )
)  =  ( Base `  (mulGrp `  Z )
)
57 eqid 2441 . . . . . . . 8  |-  ( Base `  ( (mulGrp `  S
)  ^s  A ) )  =  ( Base `  (
(mulGrp `  S )  ^s  A ) )
58 eqid 2441 . . . . . . . 8  |-  ( +g  `  (mulGrp `  Z )
)  =  ( +g  `  (mulGrp `  Z )
)
59 eqid 2441 . . . . . . . 8  |-  ( +g  `  ( (mulGrp `  S
)  ^s  A ) )  =  ( +g  `  (
(mulGrp `  S )  ^s  A ) )
6010, 31, 28, 55, 56, 57, 58, 59pwsmgp 16700 . . . . . . 7  |-  ( ( S  e.  Ring  /\  A  e.  V )  ->  (
( Base `  (mulGrp `  Z
) )  =  (
Base `  ( (mulGrp `  S )  ^s  A ) )  /\  ( +g  `  (mulGrp `  Z )
)  =  ( +g  `  ( (mulGrp `  S
)  ^s  A ) ) ) )
619, 4, 60syl2anc 656 . . . . . 6  |-  ( ph  ->  ( ( Base `  (mulGrp `  Z ) )  =  ( Base `  (
(mulGrp `  S )  ^s  A ) )  /\  ( +g  `  (mulGrp `  Z ) )  =  ( +g  `  (
(mulGrp `  S )  ^s  A ) ) ) )
6261simpld 456 . . . . 5  |-  ( ph  ->  ( Base `  (mulGrp `  Z ) )  =  ( Base `  (
(mulGrp `  S )  ^s  A ) ) )
6353simprd 460 . . . . . 6  |-  ( ph  ->  ( +g  `  (mulGrp `  Y ) )  =  ( +g  `  (
(mulGrp `  R )  ^s  A ) ) )
6463proplem3 14625 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  (mulGrp `  Y ) )  /\  y  e.  ( Base `  (mulGrp `  Y )
) ) )  -> 
( x ( +g  `  (mulGrp `  Y )
) y )  =  ( x ( +g  `  ( (mulGrp `  R
)  ^s  A ) ) y ) )
6561simprd 460 . . . . . 6  |-  ( ph  ->  ( +g  `  (mulGrp `  Z ) )  =  ( +g  `  (
(mulGrp `  S )  ^s  A ) ) )
6665proplem3 14625 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  (mulGrp `  Z ) )  /\  y  e.  ( Base `  (mulGrp `  Z )
) ) )  -> 
( x ( +g  `  (mulGrp `  Z )
) y )  =  ( x ( +g  `  ( (mulGrp `  S
)  ^s  A ) ) y ) )
6746, 47, 54, 62, 64, 66mhmpropd 15466 . . . 4  |-  ( ph  ->  ( (mulGrp `  Y
) MndHom  (mulGrp `  Z )
)  =  ( ( (mulGrp `  R )  ^s  A ) MndHom  ( (mulGrp `  S )  ^s  A ) ) )
6834, 45, 673eltr4d 2522 . . 3  |-  ( ph  ->  ( g  e.  B  |->  ( F  o.  g
) )  e.  ( (mulGrp `  Y ) MndHom  (mulGrp `  Z ) ) )
6926, 68jca 529 . 2  |-  ( ph  ->  ( ( g  e.  B  |->  ( F  o.  g ) )  e.  ( Y  GrpHom  Z )  /\  ( g  e.  B  |->  ( F  o.  g ) )  e.  ( (mulGrp `  Y
) MndHom  (mulGrp `  Z )
) ) )
7048, 55isrhm 16801 . 2  |-  ( ( g  e.  B  |->  ( F  o.  g ) )  e.  ( Y RingHom  Z )  <->  ( ( Y  e.  Ring  /\  Z  e.  Ring )  /\  (
( g  e.  B  |->  ( F  o.  g
) )  e.  ( Y  GrpHom  Z )  /\  ( g  e.  B  |->  ( F  o.  g
) )  e.  ( (mulGrp `  Y ) MndHom  (mulGrp `  Z ) ) ) ) )
7113, 69, 70sylanbrc 659 1  |-  ( ph  ->  ( g  e.  B  |->  ( F  o.  g
) )  e.  ( Y RingHom  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761    e. cmpt 4347    o. ccom 4840   ` cfv 5415  (class class class)co 6090    ^m cmap 7210   Basecbs 14170   +g cplusg 14234    ^s cpws 14381   Mndcmnd 15405   Grpcgrp 15406   MndHom cmhm 15458    GrpHom cghm 15737  mulGrpcmgp 16581   Ringcrg 16635   RingHom crh 16794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-fz 11434  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-plusg 14247  df-mulr 14248  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-hom 14258  df-cco 14259  df-0g 14376  df-prds 14382  df-pws 14384  df-mnd 15411  df-mhm 15460  df-grp 15538  df-minusg 15539  df-ghm 15738  df-mgp 16582  df-ur 16594  df-rng 16637  df-rnghom 16796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator