MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsco2mhm Structured version   Visualization version   Unicode version

Theorem pwsco2mhm 16696
Description: Left composition with a monoid homomorphism yields a monoid homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pwsco2mhm.y  |-  Y  =  ( R  ^s  A )
pwsco2mhm.z  |-  Z  =  ( S  ^s  A )
pwsco2mhm.b  |-  B  =  ( Base `  Y
)
pwsco2mhm.a  |-  ( ph  ->  A  e.  V )
pwsco2mhm.f  |-  ( ph  ->  F  e.  ( R MndHom  S ) )
Assertion
Ref Expression
pwsco2mhm  |-  ( ph  ->  ( g  e.  B  |->  ( F  o.  g
) )  e.  ( Y MndHom  Z ) )
Distinct variable groups:    B, g    g, F    g, Y    g, Z    ph, g
Allowed substitution hints:    A( g)    R( g)    S( g)    V( g)

Proof of Theorem pwsco2mhm
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsco2mhm.f . . . . 5  |-  ( ph  ->  F  e.  ( R MndHom  S ) )
2 mhmrcl1 16663 . . . . 5  |-  ( F  e.  ( R MndHom  S
)  ->  R  e.  Mnd )
31, 2syl 17 . . . 4  |-  ( ph  ->  R  e.  Mnd )
4 pwsco2mhm.a . . . 4  |-  ( ph  ->  A  e.  V )
5 pwsco2mhm.y . . . . 5  |-  Y  =  ( R  ^s  A )
65pwsmnd 16649 . . . 4  |-  ( ( R  e.  Mnd  /\  A  e.  V )  ->  Y  e.  Mnd )
73, 4, 6syl2anc 673 . . 3  |-  ( ph  ->  Y  e.  Mnd )
8 mhmrcl2 16664 . . . . 5  |-  ( F  e.  ( R MndHom  S
)  ->  S  e.  Mnd )
91, 8syl 17 . . . 4  |-  ( ph  ->  S  e.  Mnd )
10 pwsco2mhm.z . . . . 5  |-  Z  =  ( S  ^s  A )
1110pwsmnd 16649 . . . 4  |-  ( ( S  e.  Mnd  /\  A  e.  V )  ->  Z  e.  Mnd )
129, 4, 11syl2anc 673 . . 3  |-  ( ph  ->  Z  e.  Mnd )
137, 12jca 541 . 2  |-  ( ph  ->  ( Y  e.  Mnd  /\  Z  e.  Mnd )
)
14 eqid 2471 . . . . . . . . 9  |-  ( Base `  R )  =  (
Base `  R )
15 eqid 2471 . . . . . . . . 9  |-  ( Base `  S )  =  (
Base `  S )
1614, 15mhmf 16665 . . . . . . . 8  |-  ( F  e.  ( R MndHom  S
)  ->  F :
( Base `  R ) --> ( Base `  S )
)
171, 16syl 17 . . . . . . 7  |-  ( ph  ->  F : ( Base `  R ) --> ( Base `  S ) )
1817adantr 472 . . . . . 6  |-  ( (
ph  /\  g  e.  B )  ->  F : ( Base `  R
) --> ( Base `  S
) )
19 pwsco2mhm.b . . . . . . 7  |-  B  =  ( Base `  Y
)
203adantr 472 . . . . . . 7  |-  ( (
ph  /\  g  e.  B )  ->  R  e.  Mnd )
214adantr 472 . . . . . . 7  |-  ( (
ph  /\  g  e.  B )  ->  A  e.  V )
22 simpr 468 . . . . . . 7  |-  ( (
ph  /\  g  e.  B )  ->  g  e.  B )
235, 14, 19, 20, 21, 22pwselbas 15465 . . . . . 6  |-  ( (
ph  /\  g  e.  B )  ->  g : A --> ( Base `  R
) )
24 fco 5751 . . . . . 6  |-  ( ( F : ( Base `  R ) --> ( Base `  S )  /\  g : A --> ( Base `  R
) )  ->  ( F  o.  g ) : A --> ( Base `  S
) )
2518, 23, 24syl2anc 673 . . . . 5  |-  ( (
ph  /\  g  e.  B )  ->  ( F  o.  g ) : A --> ( Base `  S
) )
269adantr 472 . . . . . 6  |-  ( (
ph  /\  g  e.  B )  ->  S  e.  Mnd )
27 eqid 2471 . . . . . . 7  |-  ( Base `  Z )  =  (
Base `  Z )
2810, 15, 27pwselbasb 15464 . . . . . 6  |-  ( ( S  e.  Mnd  /\  A  e.  V )  ->  ( ( F  o.  g )  e.  (
Base `  Z )  <->  ( F  o.  g ) : A --> ( Base `  S ) ) )
2926, 21, 28syl2anc 673 . . . . 5  |-  ( (
ph  /\  g  e.  B )  ->  (
( F  o.  g
)  e.  ( Base `  Z )  <->  ( F  o.  g ) : A --> ( Base `  S )
) )
3025, 29mpbird 240 . . . 4  |-  ( (
ph  /\  g  e.  B )  ->  ( F  o.  g )  e.  ( Base `  Z
) )
31 eqid 2471 . . . 4  |-  ( g  e.  B  |->  ( F  o.  g ) )  =  ( g  e.  B  |->  ( F  o.  g ) )
3230, 31fmptd 6061 . . 3  |-  ( ph  ->  ( g  e.  B  |->  ( F  o.  g
) ) : B --> ( Base `  Z )
)
331adantr 472 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  F  e.  ( R MndHom  S ) )
3433adantr 472 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  w  e.  A )  ->  F  e.  ( R MndHom  S ) )
3533, 2syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  R  e.  Mnd )
364adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  A  e.  V )
37 simprl 772 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  x  e.  B )
385, 14, 19, 35, 36, 37pwselbas 15465 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  x : A --> ( Base `  R ) )
3938ffvelrnda 6037 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  w  e.  A )  ->  (
x `  w )  e.  ( Base `  R
) )
40 simprr 774 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
y  e.  B )
415, 14, 19, 35, 36, 40pwselbas 15465 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
y : A --> ( Base `  R ) )
4241ffvelrnda 6037 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  w  e.  A )  ->  (
y `  w )  e.  ( Base `  R
) )
43 eqid 2471 . . . . . . . . . 10  |-  ( +g  `  R )  =  ( +g  `  R )
44 eqid 2471 . . . . . . . . . 10  |-  ( +g  `  S )  =  ( +g  `  S )
4514, 43, 44mhmlin 16667 . . . . . . . . 9  |-  ( ( F  e.  ( R MndHom  S )  /\  (
x `  w )  e.  ( Base `  R
)  /\  ( y `  w )  e.  (
Base `  R )
)  ->  ( F `  ( ( x `  w ) ( +g  `  R ) ( y `
 w ) ) )  =  ( ( F `  ( x `
 w ) ) ( +g  `  S
) ( F `  ( y `  w
) ) ) )
4634, 39, 42, 45syl3anc 1292 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  w  e.  A )  ->  ( F `  ( (
x `  w )
( +g  `  R ) ( y `  w
) ) )  =  ( ( F `  ( x `  w
) ) ( +g  `  S ) ( F `
 ( y `  w ) ) ) )
4746mpteq2dva 4482 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( w  e.  A  |->  ( F `  (
( x `  w
) ( +g  `  R
) ( y `  w ) ) ) )  =  ( w  e.  A  |->  ( ( F `  ( x `
 w ) ) ( +g  `  S
) ( F `  ( y `  w
) ) ) ) )
48 fvex 5889 . . . . . . . . 9  |-  ( F `
 ( x `  w ) )  e. 
_V
4948a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  w  e.  A )  ->  ( F `  ( x `  w ) )  e. 
_V )
50 fvex 5889 . . . . . . . . 9  |-  ( F `
 ( y `  w ) )  e. 
_V
5150a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  w  e.  A )  ->  ( F `  ( y `  w ) )  e. 
_V )
5238feqmptd 5932 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  x  =  ( w  e.  A  |->  ( x `
 w ) ) )
5333, 16syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  F : ( Base `  R
) --> ( Base `  S
) )
5453feqmptd 5932 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  F  =  ( z  e.  ( Base `  R
)  |->  ( F `  z ) ) )
55 fveq2 5879 . . . . . . . . 9  |-  ( z  =  ( x `  w )  ->  ( F `  z )  =  ( F `  ( x `  w
) ) )
5639, 52, 54, 55fmptco 6072 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F  o.  x
)  =  ( w  e.  A  |->  ( F `
 ( x `  w ) ) ) )
5741feqmptd 5932 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
y  =  ( w  e.  A  |->  ( y `
 w ) ) )
58 fveq2 5879 . . . . . . . . 9  |-  ( z  =  ( y `  w )  ->  ( F `  z )  =  ( F `  ( y `  w
) ) )
5942, 57, 54, 58fmptco 6072 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F  o.  y
)  =  ( w  e.  A  |->  ( F `
 ( y `  w ) ) ) )
6036, 49, 51, 56, 59offval2 6567 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( F  o.  x )  oF ( +g  `  S
) ( F  o.  y ) )  =  ( w  e.  A  |->  ( ( F `  ( x `  w
) ) ( +g  `  S ) ( F `
 ( y `  w ) ) ) ) )
6147, 60eqtr4d 2508 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( w  e.  A  |->  ( F `  (
( x `  w
) ( +g  `  R
) ( y `  w ) ) ) )  =  ( ( F  o.  x )  oF ( +g  `  S ) ( F  o.  y ) ) )
6235adantr 472 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  w  e.  A )  ->  R  e.  Mnd )
6314, 43mndcl 16623 . . . . . . . 8  |-  ( ( R  e.  Mnd  /\  ( x `  w
)  e.  ( Base `  R )  /\  (
y `  w )  e.  ( Base `  R
) )  ->  (
( x `  w
) ( +g  `  R
) ( y `  w ) )  e.  ( Base `  R
) )
6462, 39, 42, 63syl3anc 1292 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  w  e.  A )  ->  (
( x `  w
) ( +g  `  R
) ( y `  w ) )  e.  ( Base `  R
) )
65 eqid 2471 . . . . . . . . 9  |-  ( +g  `  Y )  =  ( +g  `  Y )
665, 19, 35, 36, 37, 40, 43, 65pwsplusgval 15466 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  Y ) y )  =  ( x  oF ( +g  `  R
) y ) )
67 fvex 5889 . . . . . . . . . 10  |-  ( x `
 w )  e. 
_V
6867a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  w  e.  A )  ->  (
x `  w )  e.  _V )
69 fvex 5889 . . . . . . . . . 10  |-  ( y `
 w )  e. 
_V
7069a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  w  e.  A )  ->  (
y `  w )  e.  _V )
7136, 68, 70, 52, 57offval2 6567 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  oF ( +g  `  R
) y )  =  ( w  e.  A  |->  ( ( x `  w ) ( +g  `  R ) ( y `
 w ) ) ) )
7266, 71eqtrd 2505 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  Y ) y )  =  ( w  e.  A  |->  ( ( x `
 w ) ( +g  `  R ) ( y `  w
) ) ) )
73 fveq2 5879 . . . . . . 7  |-  ( z  =  ( ( x `
 w ) ( +g  `  R ) ( y `  w
) )  ->  ( F `  z )  =  ( F `  ( ( x `  w ) ( +g  `  R ) ( y `
 w ) ) ) )
7464, 72, 54, 73fmptco 6072 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F  o.  (
x ( +g  `  Y
) y ) )  =  ( w  e.  A  |->  ( F `  ( ( x `  w ) ( +g  `  R ) ( y `
 w ) ) ) ) )
7533, 8syl 17 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  S  e.  Mnd )
76 fco 5751 . . . . . . . . 9  |-  ( ( F : ( Base `  R ) --> ( Base `  S )  /\  x : A --> ( Base `  R
) )  ->  ( F  o.  x ) : A --> ( Base `  S
) )
7753, 38, 76syl2anc 673 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F  o.  x
) : A --> ( Base `  S ) )
7810, 15, 27pwselbasb 15464 . . . . . . . . 9  |-  ( ( S  e.  Mnd  /\  A  e.  V )  ->  ( ( F  o.  x )  e.  (
Base `  Z )  <->  ( F  o.  x ) : A --> ( Base `  S ) ) )
7975, 36, 78syl2anc 673 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( F  o.  x )  e.  (
Base `  Z )  <->  ( F  o.  x ) : A --> ( Base `  S ) ) )
8077, 79mpbird 240 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F  o.  x
)  e.  ( Base `  Z ) )
81 fco 5751 . . . . . . . . 9  |-  ( ( F : ( Base `  R ) --> ( Base `  S )  /\  y : A --> ( Base `  R
) )  ->  ( F  o.  y ) : A --> ( Base `  S
) )
8253, 41, 81syl2anc 673 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F  o.  y
) : A --> ( Base `  S ) )
8310, 15, 27pwselbasb 15464 . . . . . . . . 9  |-  ( ( S  e.  Mnd  /\  A  e.  V )  ->  ( ( F  o.  y )  e.  (
Base `  Z )  <->  ( F  o.  y ) : A --> ( Base `  S ) ) )
8475, 36, 83syl2anc 673 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( F  o.  y )  e.  (
Base `  Z )  <->  ( F  o.  y ) : A --> ( Base `  S ) ) )
8582, 84mpbird 240 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F  o.  y
)  e.  ( Base `  Z ) )
86 eqid 2471 . . . . . . 7  |-  ( +g  `  Z )  =  ( +g  `  Z )
8710, 27, 75, 36, 80, 85, 44, 86pwsplusgval 15466 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( F  o.  x ) ( +g  `  Z ) ( F  o.  y ) )  =  ( ( F  o.  x )  oF ( +g  `  S
) ( F  o.  y ) ) )
8861, 74, 873eqtr4d 2515 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F  o.  (
x ( +g  `  Y
) y ) )  =  ( ( F  o.  x ) ( +g  `  Z ) ( F  o.  y
) ) )
8919, 65mndcl 16623 . . . . . . . 8  |-  ( ( Y  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  Y ) y )  e.  B )
90893expb 1232 . . . . . . 7  |-  ( ( Y  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  Y
) y )  e.  B )
917, 90sylan 479 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  Y ) y )  e.  B )
92 coexg 6763 . . . . . . 7  |-  ( ( F  e.  ( R MndHom  S )  /\  (
x ( +g  `  Y
) y )  e.  B )  ->  ( F  o.  ( x
( +g  `  Y ) y ) )  e. 
_V )
9333, 91, 92syl2anc 673 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F  o.  (
x ( +g  `  Y
) y ) )  e.  _V )
94 coeq2 4998 . . . . . . 7  |-  ( g  =  ( x ( +g  `  Y ) y )  ->  ( F  o.  g )  =  ( F  o.  ( x ( +g  `  Y ) y ) ) )
9594, 31fvmptg 5961 . . . . . 6  |-  ( ( ( x ( +g  `  Y ) y )  e.  B  /\  ( F  o.  ( x
( +g  `  Y ) y ) )  e. 
_V )  ->  (
( g  e.  B  |->  ( F  o.  g
) ) `  (
x ( +g  `  Y
) y ) )  =  ( F  o.  ( x ( +g  `  Y ) y ) ) )
9691, 93, 95syl2anc 673 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( g  e.  B  |->  ( F  o.  g ) ) `  ( x ( +g  `  Y ) y ) )  =  ( F  o.  ( x ( +g  `  Y ) y ) ) )
97 coeq2 4998 . . . . . . . 8  |-  ( g  =  x  ->  ( F  o.  g )  =  ( F  o.  x ) )
9897, 31fvmptg 5961 . . . . . . 7  |-  ( ( x  e.  B  /\  ( F  o.  x
)  e.  ( Base `  Z ) )  -> 
( ( g  e.  B  |->  ( F  o.  g ) ) `  x )  =  ( F  o.  x ) )
9937, 80, 98syl2anc 673 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( g  e.  B  |->  ( F  o.  g ) ) `  x )  =  ( F  o.  x ) )
100 coeq2 4998 . . . . . . . 8  |-  ( g  =  y  ->  ( F  o.  g )  =  ( F  o.  y ) )
101100, 31fvmptg 5961 . . . . . . 7  |-  ( ( y  e.  B  /\  ( F  o.  y
)  e.  ( Base `  Z ) )  -> 
( ( g  e.  B  |->  ( F  o.  g ) ) `  y )  =  ( F  o.  y ) )
10240, 85, 101syl2anc 673 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( g  e.  B  |->  ( F  o.  g ) ) `  y )  =  ( F  o.  y ) )
10399, 102oveq12d 6326 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( ( g  e.  B  |->  ( F  o.  g ) ) `
 x ) ( +g  `  Z ) ( ( g  e.  B  |->  ( F  o.  g ) ) `  y ) )  =  ( ( F  o.  x ) ( +g  `  Z ) ( F  o.  y ) ) )
10488, 96, 1033eqtr4d 2515 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( g  e.  B  |->  ( F  o.  g ) ) `  ( x ( +g  `  Y ) y ) )  =  ( ( ( g  e.  B  |->  ( F  o.  g
) ) `  x
) ( +g  `  Z
) ( ( g  e.  B  |->  ( F  o.  g ) ) `
 y ) ) )
105104ralrimivva 2814 . . 3  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( ( g  e.  B  |->  ( F  o.  g ) ) `  ( x ( +g  `  Y ) y ) )  =  ( ( ( g  e.  B  |->  ( F  o.  g
) ) `  x
) ( +g  `  Z
) ( ( g  e.  B  |->  ( F  o.  g ) ) `
 y ) ) )
106 eqid 2471 . . . . . . 7  |-  ( 0g
`  Y )  =  ( 0g `  Y
)
10719, 106mndidcl 16632 . . . . . 6  |-  ( Y  e.  Mnd  ->  ( 0g `  Y )  e.  B )
1087, 107syl 17 . . . . 5  |-  ( ph  ->  ( 0g `  Y
)  e.  B )
109 coexg 6763 . . . . . 6  |-  ( ( F  e.  ( R MndHom  S )  /\  ( 0g `  Y )  e.  B )  ->  ( F  o.  ( 0g `  Y ) )  e. 
_V )
1101, 108, 109syl2anc 673 . . . . 5  |-  ( ph  ->  ( F  o.  ( 0g `  Y ) )  e.  _V )
111 coeq2 4998 . . . . . 6  |-  ( g  =  ( 0g `  Y )  ->  ( F  o.  g )  =  ( F  o.  ( 0g `  Y ) ) )
112111, 31fvmptg 5961 . . . . 5  |-  ( ( ( 0g `  Y
)  e.  B  /\  ( F  o.  ( 0g `  Y ) )  e.  _V )  -> 
( ( g  e.  B  |->  ( F  o.  g ) ) `  ( 0g `  Y ) )  =  ( F  o.  ( 0g `  Y ) ) )
113108, 110, 112syl2anc 673 . . . 4  |-  ( ph  ->  ( ( g  e.  B  |->  ( F  o.  g ) ) `  ( 0g `  Y ) )  =  ( F  o.  ( 0g `  Y ) ) )
114 ffn 5739 . . . . . . 7  |-  ( F : ( Base `  R
) --> ( Base `  S
)  ->  F  Fn  ( Base `  R )
)
11517, 114syl 17 . . . . . 6  |-  ( ph  ->  F  Fn  ( Base `  R ) )
116 eqid 2471 . . . . . . . 8  |-  ( 0g
`  R )  =  ( 0g `  R
)
11714, 116mndidcl 16632 . . . . . . 7  |-  ( R  e.  Mnd  ->  ( 0g `  R )  e.  ( Base `  R
) )
1183, 117syl 17 . . . . . 6  |-  ( ph  ->  ( 0g `  R
)  e.  ( Base `  R ) )
119 fcoconst 6076 . . . . . 6  |-  ( ( F  Fn  ( Base `  R )  /\  ( 0g `  R )  e.  ( Base `  R
) )  ->  ( F  o.  ( A  X.  { ( 0g `  R ) } ) )  =  ( A  X.  { ( F `
 ( 0g `  R ) ) } ) )
120115, 118, 119syl2anc 673 . . . . 5  |-  ( ph  ->  ( F  o.  ( A  X.  { ( 0g
`  R ) } ) )  =  ( A  X.  { ( F `  ( 0g
`  R ) ) } ) )
1215, 116pws0g 16650 . . . . . . 7  |-  ( ( R  e.  Mnd  /\  A  e.  V )  ->  ( A  X.  {
( 0g `  R
) } )  =  ( 0g `  Y
) )
1223, 4, 121syl2anc 673 . . . . . 6  |-  ( ph  ->  ( A  X.  {
( 0g `  R
) } )  =  ( 0g `  Y
) )
123122coeq2d 5002 . . . . 5  |-  ( ph  ->  ( F  o.  ( A  X.  { ( 0g
`  R ) } ) )  =  ( F  o.  ( 0g
`  Y ) ) )
124 eqid 2471 . . . . . . . . 9  |-  ( 0g
`  S )  =  ( 0g `  S
)
125116, 124mhm0 16668 . . . . . . . 8  |-  ( F  e.  ( R MndHom  S
)  ->  ( F `  ( 0g `  R
) )  =  ( 0g `  S ) )
1261, 125syl 17 . . . . . . 7  |-  ( ph  ->  ( F `  ( 0g `  R ) )  =  ( 0g `  S ) )
127126sneqd 3971 . . . . . 6  |-  ( ph  ->  { ( F `  ( 0g `  R ) ) }  =  {
( 0g `  S
) } )
128127xpeq2d 4863 . . . . 5  |-  ( ph  ->  ( A  X.  {
( F `  ( 0g `  R ) ) } )  =  ( A  X.  { ( 0g `  S ) } ) )
129120, 123, 1283eqtr3d 2513 . . . 4  |-  ( ph  ->  ( F  o.  ( 0g `  Y ) )  =  ( A  X.  { ( 0g `  S ) } ) )
13010, 124pws0g 16650 . . . . 5  |-  ( ( S  e.  Mnd  /\  A  e.  V )  ->  ( A  X.  {
( 0g `  S
) } )  =  ( 0g `  Z
) )
1319, 4, 130syl2anc 673 . . . 4  |-  ( ph  ->  ( A  X.  {
( 0g `  S
) } )  =  ( 0g `  Z
) )
132113, 129, 1313eqtrd 2509 . . 3  |-  ( ph  ->  ( ( g  e.  B  |->  ( F  o.  g ) ) `  ( 0g `  Y ) )  =  ( 0g
`  Z ) )
13332, 105, 1323jca 1210 . 2  |-  ( ph  ->  ( ( g  e.  B  |->  ( F  o.  g ) ) : B --> ( Base `  Z
)  /\  A. x  e.  B  A. y  e.  B  ( (
g  e.  B  |->  ( F  o.  g ) ) `  ( x ( +g  `  Y
) y ) )  =  ( ( ( g  e.  B  |->  ( F  o.  g ) ) `  x ) ( +g  `  Z
) ( ( g  e.  B  |->  ( F  o.  g ) ) `
 y ) )  /\  ( ( g  e.  B  |->  ( F  o.  g ) ) `
 ( 0g `  Y ) )  =  ( 0g `  Z
) ) )
134 eqid 2471 . . 3  |-  ( 0g
`  Z )  =  ( 0g `  Z
)
13519, 27, 65, 86, 106, 134ismhm 16662 . 2  |-  ( ( g  e.  B  |->  ( F  o.  g ) )  e.  ( Y MndHom  Z )  <->  ( ( Y  e.  Mnd  /\  Z  e.  Mnd )  /\  (
( g  e.  B  |->  ( F  o.  g
) ) : B --> ( Base `  Z )  /\  A. x  e.  B  A. y  e.  B  ( ( g  e.  B  |->  ( F  o.  g ) ) `  ( x ( +g  `  Y ) y ) )  =  ( ( ( g  e.  B  |->  ( F  o.  g
) ) `  x
) ( +g  `  Z
) ( ( g  e.  B  |->  ( F  o.  g ) ) `
 y ) )  /\  ( ( g  e.  B  |->  ( F  o.  g ) ) `
 ( 0g `  Y ) )  =  ( 0g `  Z
) ) ) )
13613, 133, 135sylanbrc 677 1  |-  ( ph  ->  ( g  e.  B  |->  ( F  o.  g
) )  e.  ( Y MndHom  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   A.wral 2756   _Vcvv 3031   {csn 3959    |-> cmpt 4454    X. cxp 4837    o. ccom 4843    Fn wfn 5584   -->wf 5585   ` cfv 5589  (class class class)co 6308    oFcof 6548   Basecbs 15199   +g cplusg 15268   0gc0g 15416    ^s cpws 15423   Mndcmnd 16613   MndHom cmhm 16658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-fz 11811  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-plusg 15281  df-mulr 15282  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-hom 15292  df-cco 15293  df-0g 15418  df-prds 15424  df-pws 15426  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-mhm 16660
This theorem is referenced by:  pwsco2rhm  18045
  Copyright terms: Public domain W3C validator