MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsbas Structured version   Unicode version

Theorem pwsbas 14731
Description: Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsbas.y  |-  Y  =  ( R  ^s  I )
pwsbas.f  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
pwsbas  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( B  ^m  I
)  =  ( Base `  Y ) )

Proof of Theorem pwsbas
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pwsbas.y . . . 4  |-  Y  =  ( R  ^s  I )
2 eqid 2460 . . . 4  |-  (Scalar `  R )  =  (Scalar `  R )
31, 2pwsval 14730 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
43fveq2d 5861 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( Base `  Y
)  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
5 eqid 2460 . . . 4  |-  ( (Scalar `  R ) X_s ( I  X.  { R } ) )  =  ( (Scalar `  R
) X_s ( I  X.  { R } ) )
6 fvex 5867 . . . . 5  |-  (Scalar `  R )  e.  _V
76a1i 11 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  (Scalar `  R )  e.  _V )
8 simpr 461 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  I  e.  W )
9 snex 4681 . . . . 5  |-  { R }  e.  _V
10 xpexg 6702 . . . . 5  |-  ( ( I  e.  W  /\  { R }  e.  _V )  ->  ( I  X.  { R } )  e. 
_V )
118, 9, 10sylancl 662 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( I  X.  { R } )  e.  _V )
12 eqid 2460 . . . 4  |-  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  =  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )
13 snnzg 4137 . . . . . 6  |-  ( R  e.  V  ->  { R }  =/=  (/) )
1413adantr 465 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  { R }  =/=  (/) )
15 dmxp 5212 . . . . 5  |-  ( { R }  =/=  (/)  ->  dom  ( I  X.  { R } )  =  I )
1614, 15syl 16 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  dom  ( I  X.  { R } )  =  I )
175, 7, 11, 12, 16prdsbas 14701 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )  =  X_ x  e.  I 
( Base `  ( (
I  X.  { R } ) `  x
) ) )
18 fvconst2g 6105 . . . . . . 7  |-  ( ( R  e.  V  /\  x  e.  I )  ->  ( ( I  X.  { R } ) `  x )  =  R )
1918fveq2d 5861 . . . . . 6  |-  ( ( R  e.  V  /\  x  e.  I )  ->  ( Base `  (
( I  X.  { R } ) `  x
) )  =  (
Base `  R )
)
2019ralrimiva 2871 . . . . 5  |-  ( R  e.  V  ->  A. x  e.  I  ( Base `  ( ( I  X.  { R } ) `  x ) )  =  ( Base `  R
) )
2120adantr 465 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  A. x  e.  I 
( Base `  ( (
I  X.  { R } ) `  x
) )  =  (
Base `  R )
)
22 ixpeq2 7473 . . . 4  |-  ( A. x  e.  I  ( Base `  ( ( I  X.  { R }
) `  x )
)  =  ( Base `  R )  ->  X_ x  e.  I  ( Base `  ( ( I  X.  { R } ) `  x ) )  = 
X_ x  e.  I 
( Base `  R )
)
2321, 22syl 16 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
X_ x  e.  I 
( Base `  ( (
I  X.  { R } ) `  x
) )  =  X_ x  e.  I  ( Base `  R ) )
2417, 23eqtrd 2501 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )  =  X_ x  e.  I 
( Base `  R )
)
25 fvex 5867 . . . 4  |-  ( Base `  R )  e.  _V
26 ixpconstg 7468 . . . 4  |-  ( ( I  e.  W  /\  ( Base `  R )  e.  _V )  ->  X_ x  e.  I  ( Base `  R )  =  ( ( Base `  R
)  ^m  I )
)
278, 25, 26sylancl 662 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
X_ x  e.  I 
( Base `  R )  =  ( ( Base `  R )  ^m  I
) )
28 pwsbas.f . . . 4  |-  B  =  ( Base `  R
)
2928oveq1i 6285 . . 3  |-  ( B  ^m  I )  =  ( ( Base `  R
)  ^m  I )
3027, 29syl6eqr 2519 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
X_ x  e.  I 
( Base `  R )  =  ( B  ^m  I ) )
314, 24, 303eqtrrd 2506 1  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( B  ^m  I
)  =  ( Base `  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2655   A.wral 2807   _Vcvv 3106   (/)c0 3778   {csn 4020    X. cxp 4990   dom cdm 4992   ` cfv 5579  (class class class)co 6275    ^m cmap 7410   X_cixp 7459   Basecbs 14479  Scalarcsca 14547   X_scprds 14690    ^s cpws 14691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-map 7412  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-sup 7890  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-fz 11662  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-plusg 14557  df-mulr 14558  df-sca 14560  df-vsca 14561  df-ip 14562  df-tset 14563  df-ple 14564  df-ds 14566  df-hom 14568  df-cco 14569  df-prds 14692  df-pws 14694
This theorem is referenced by:  pwselbasb  14732  pwssnf1o  14742  pwsdiagmhm  15803  pwsco1rhm  17163  pwsco2rhm  17164  evls1val  18121  evls1rhmlem  18122  evl1val  18129  frlmbas  18546  frlmbasOLD  18547  frlmsubgval  18558  repwsmet  29920  rrnequiv  29921  pwslnmlem0  30630
  Copyright terms: Public domain W3C validator