MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsbas Structured version   Unicode version

Theorem pwsbas 14446
Description: Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsbas.y  |-  Y  =  ( R  ^s  I )
pwsbas.f  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
pwsbas  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( B  ^m  I
)  =  ( Base `  Y ) )

Proof of Theorem pwsbas
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pwsbas.y . . . 4  |-  Y  =  ( R  ^s  I )
2 eqid 2443 . . . 4  |-  (Scalar `  R )  =  (Scalar `  R )
31, 2pwsval 14445 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
43fveq2d 5716 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( Base `  Y
)  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
5 eqid 2443 . . . 4  |-  ( (Scalar `  R ) X_s ( I  X.  { R } ) )  =  ( (Scalar `  R
) X_s ( I  X.  { R } ) )
6 fvex 5722 . . . . 5  |-  (Scalar `  R )  e.  _V
76a1i 11 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  (Scalar `  R )  e.  _V )
8 simpr 461 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  I  e.  W )
9 snex 4554 . . . . 5  |-  { R }  e.  _V
10 xpexg 6528 . . . . 5  |-  ( ( I  e.  W  /\  { R }  e.  _V )  ->  ( I  X.  { R } )  e. 
_V )
118, 9, 10sylancl 662 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( I  X.  { R } )  e.  _V )
12 eqid 2443 . . . 4  |-  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  =  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )
13 snnzg 4013 . . . . . 6  |-  ( R  e.  V  ->  { R }  =/=  (/) )
1413adantr 465 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  { R }  =/=  (/) )
15 dmxp 5079 . . . . 5  |-  ( { R }  =/=  (/)  ->  dom  ( I  X.  { R } )  =  I )
1614, 15syl 16 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  dom  ( I  X.  { R } )  =  I )
175, 7, 11, 12, 16prdsbas 14416 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )  =  X_ x  e.  I 
( Base `  ( (
I  X.  { R } ) `  x
) ) )
18 fvconst2g 5952 . . . . . . 7  |-  ( ( R  e.  V  /\  x  e.  I )  ->  ( ( I  X.  { R } ) `  x )  =  R )
1918fveq2d 5716 . . . . . 6  |-  ( ( R  e.  V  /\  x  e.  I )  ->  ( Base `  (
( I  X.  { R } ) `  x
) )  =  (
Base `  R )
)
2019ralrimiva 2820 . . . . 5  |-  ( R  e.  V  ->  A. x  e.  I  ( Base `  ( ( I  X.  { R } ) `  x ) )  =  ( Base `  R
) )
2120adantr 465 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  A. x  e.  I 
( Base `  ( (
I  X.  { R } ) `  x
) )  =  (
Base `  R )
)
22 ixpeq2 7298 . . . 4  |-  ( A. x  e.  I  ( Base `  ( ( I  X.  { R }
) `  x )
)  =  ( Base `  R )  ->  X_ x  e.  I  ( Base `  ( ( I  X.  { R } ) `  x ) )  = 
X_ x  e.  I 
( Base `  R )
)
2321, 22syl 16 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
X_ x  e.  I 
( Base `  ( (
I  X.  { R } ) `  x
) )  =  X_ x  e.  I  ( Base `  R ) )
2417, 23eqtrd 2475 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )  =  X_ x  e.  I 
( Base `  R )
)
25 fvex 5722 . . . 4  |-  ( Base `  R )  e.  _V
26 ixpconstg 7293 . . . 4  |-  ( ( I  e.  W  /\  ( Base `  R )  e.  _V )  ->  X_ x  e.  I  ( Base `  R )  =  ( ( Base `  R
)  ^m  I )
)
278, 25, 26sylancl 662 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
X_ x  e.  I 
( Base `  R )  =  ( ( Base `  R )  ^m  I
) )
28 pwsbas.f . . . 4  |-  B  =  ( Base `  R
)
2928oveq1i 6122 . . 3  |-  ( B  ^m  I )  =  ( ( Base `  R
)  ^m  I )
3027, 29syl6eqr 2493 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
X_ x  e.  I 
( Base `  R )  =  ( B  ^m  I ) )
314, 24, 303eqtrrd 2480 1  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( B  ^m  I
)  =  ( Base `  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2620   A.wral 2736   _Vcvv 2993   (/)c0 3658   {csn 3898    X. cxp 4859   dom cdm 4861   ` cfv 5439  (class class class)co 6112    ^m cmap 7235   X_cixp 7284   Basecbs 14195  Scalarcsca 14262   X_scprds 14405    ^s cpws 14406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-er 7122  df-map 7237  df-ixp 7285  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-sup 7712  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-7 10406  df-8 10407  df-9 10408  df-10 10409  df-n0 10601  df-z 10668  df-dec 10777  df-uz 10883  df-fz 11459  df-struct 14197  df-ndx 14198  df-slot 14199  df-base 14200  df-plusg 14272  df-mulr 14273  df-sca 14275  df-vsca 14276  df-ip 14277  df-tset 14278  df-ple 14279  df-ds 14281  df-hom 14283  df-cco 14284  df-prds 14407  df-pws 14409
This theorem is referenced by:  pwselbasb  14447  pwssnf1o  14457  pwsdiagmhm  15518  pwsco1rhm  16848  pwsco2rhm  16849  evls1val  17777  evls1rhmlem  17778  evl1val  17785  frlmbas  18202  frlmbasOLD  18203  frlmsubgval  18214  repwsmet  28759  rrnequiv  28760  pwslnmlem0  29470
  Copyright terms: Public domain W3C validator