Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwid Structured version   Unicode version

Theorem pwid 4024
 Description: A set is a member of its power class. Theorem 87 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
pwid.1
Assertion
Ref Expression
pwid

Proof of Theorem pwid
StepHypRef Expression
1 pwid.1 . 2
2 pwidg 4023 . 2
31, 2ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:   wcel 1767  cvv 3113  cpw 4010 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-v 3115  df-in 3483  df-ss 3490  df-pw 4012 This theorem is referenced by:  r1ordg  8192  rankr1id  8276  cfss  8641  0ram  14393  evl1fval1lem  18137  bastg  19234  fincmp  19659  restlly  19750  ptbasfi  19817  zfbas  20132  ustfilxp  20450  metustfbasOLD  20803  metustfbas  20804  minveclem3b  21578  wilthlem3  23072  coinflipprob  28058  pwtrrVD  32705  mapdunirnN  36447
 Copyright terms: Public domain W3C validator