MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem5 Structured version   Unicode version

Theorem pwfseqlem5 9041
Description: Lemma for pwfseq 9042. Although in some ways pwfseqlem4 9040 is the "main" part of the proof, one last aspect which makes up a remark in the original text is by far the hardest part to formalize. The main proof relies on the existence of an injection  K from the set of finite sequences on an infinite set 
x to  x. Now this alone would not be difficult to prove; this is mostly the claim of fseqen 8408. However, what is needed for the proof is a canonical injection on these sets, so we have to start from scratch pulling together explicit bijections from the lemmas.

If one attempts such a program, it will mostly go through, but there is one key step which is inherently nonconstructive, namely the proof of infxpen 8392. The resolution is not obvious, but it turns out that reversing an infinite ordinal's Cantor normal form absorbs all the non-leading terms (cnfcom3c 8150), which can be used to construct a pairing function explicitly using properties of the ordinal exponential (infxpenc 8395). (Contributed by Mario Carneiro, 31-May-2015.)

Hypotheses
Ref Expression
pwfseqlem5.g  |-  ( ph  ->  G : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
pwfseqlem5.x  |-  ( ph  ->  X  C_  A )
pwfseqlem5.h  |-  ( ph  ->  H : om -1-1-onto-> X )
pwfseqlem5.ps  |-  ( ps  <->  ( ( t  C_  A  /\  r  C_  ( t  X.  t )  /\  r  We  t )  /\  om  ~<_  t ) )
pwfseqlem5.n  |-  ( ph  ->  A. b  e.  (har
`  ~P A ) ( om  C_  b  ->  ( N `  b
) : ( b  X.  b ) -1-1-onto-> b ) )
pwfseqlem5.o  |-  O  = OrdIso
( r ,  t )
pwfseqlem5.t  |-  T  =  ( u  e.  dom  O ,  v  e.  dom  O 
|->  <. ( O `  u ) ,  ( O `  v )
>. )
pwfseqlem5.p  |-  P  =  ( ( O  o.  ( N `  dom  O
) )  o.  `' T )
pwfseqlem5.s  |-  S  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  ( x  e.  (
t  ^m  suc  k ) 
|->  ( ( f `  ( x  |`  k ) ) P ( x `
 k ) ) ) ) ,  { <.
(/) ,  ( O `  (/) ) >. } )
pwfseqlem5.q  |-  Q  =  ( y  e.  U_ n  e.  om  (
t  ^m  n )  |-> 
<. dom  y ,  ( ( S `  dom  y ) `  y
) >. )
pwfseqlem5.i  |-  I  =  ( x  e.  om ,  y  e.  t  |-> 
<. ( O `  x
) ,  y >.
)
pwfseqlem5.k  |-  K  =  ( ( P  o.  I )  o.  Q
)
Assertion
Ref Expression
pwfseqlem5  |-  -.  ph
Distinct variable groups:    n, b, G    r, b, t, H   
f, k, x, P   
f, b, k, u, v, x, y, n, r, t    ph, b,
k, n, r, t, x, y    K, b, n    N, b    ps, k, n, x, y    S, n, y    A, b, n, r, t    O, b, u, v, x, y
Allowed substitution hints:    ph( v, u, f)    ps( v, u, t, f, r, b)    A( x, y, v, u, f, k)    P( y, v, u, t, n, r, b)    Q( x, y, v, u, t, f, k, n, r, b)    S( x, v, u, t, f, k, r, b)    T( x, y, v, u, t, f, k, n, r, b)    G( x, y, v, u, t, f, k, r)    H( x, y, v, u, f, k, n)    I( x, y, v, u, t, f, k, n, r, b)    K( x, y, v, u, t, f, k, r)    N( x, y, v, u, t, f, k, n, r)    O( t, f, k, n, r)    X( x, y, v, u, t, f, k, n, r, b)

Proof of Theorem pwfseqlem5
Dummy variables  a 
c  d  i  j  m  s  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwfseqlem5.g . 2  |-  ( ph  ->  G : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
2 pwfseqlem5.x . 2  |-  ( ph  ->  X  C_  A )
3 pwfseqlem5.h . 2  |-  ( ph  ->  H : om -1-1-onto-> X )
4 pwfseqlem5.ps . 2  |-  ( ps  <->  ( ( t  C_  A  /\  r  C_  ( t  X.  t )  /\  r  We  t )  /\  om  ~<_  t ) )
5 vex 3116 . . . . . . . . . . 11  |-  t  e. 
_V
6 simprl3 1043 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
t  C_  A  /\  r  C_  ( t  X.  t )  /\  r  We  t )  /\  om  ~<_  t ) )  -> 
r  We  t )
74, 6sylan2b 475 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  r  We  t )
8 pwfseqlem5.o . . . . . . . . . . . 12  |-  O  = OrdIso
( r ,  t )
98oiiso 7962 . . . . . . . . . . 11  |-  ( ( t  e.  _V  /\  r  We  t )  ->  O  Isom  _E  ,  r  ( dom  O , 
t ) )
105, 7, 9sylancr 663 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  O  Isom  _E  ,  r  ( dom  O , 
t ) )
11 isof1o 6209 . . . . . . . . . 10  |-  ( O 
Isom  _E  ,  r 
( dom  O , 
t )  ->  O : dom  O -1-1-onto-> t )
1210, 11syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  O : dom  O -1-1-onto-> t
)
138oion 7961 . . . . . . . . . . . . 13  |-  ( t  e.  _V  ->  dom  O  e.  On )
145, 13ax-mp 5 . . . . . . . . . . . 12  |-  dom  O  e.  On
1514a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  dom  O  e.  On )
168oien 7963 . . . . . . . . . . . . 13  |-  ( ( t  e.  _V  /\  r  We  t )  ->  dom  O  ~~  t
)
175, 7, 16sylancr 663 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  dom  O  ~~  t
)
181adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ps )  ->  G : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
19 omex 8060 . . . . . . . . . . . . . . . . 17  |-  om  e.  _V
20 ovex 6309 . . . . . . . . . . . . . . . . 17  |-  ( A  ^m  n )  e. 
_V
2119, 20iunex 6764 . . . . . . . . . . . . . . . 16  |-  U_ n  e.  om  ( A  ^m  n )  e.  _V
22 f1dmex 6754 . . . . . . . . . . . . . . . 16  |-  ( ( G : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n )  /\  U_ n  e.  om  ( A  ^m  n )  e. 
_V )  ->  ~P A  e.  _V )
2318, 21, 22sylancl 662 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ps )  ->  ~P A  e.  _V )
24 pwexb 6595 . . . . . . . . . . . . . . 15  |-  ( A  e.  _V  <->  ~P A  e.  _V )
2523, 24sylibr 212 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  A  e.  _V )
26 simprl1 1041 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
t  C_  A  /\  r  C_  ( t  X.  t )  /\  r  We  t )  /\  om  ~<_  t ) )  -> 
t  C_  A )
274, 26sylan2b 475 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  t  C_  A )
28 ssdomg 7561 . . . . . . . . . . . . . 14  |-  ( A  e.  _V  ->  (
t  C_  A  ->  t  ~<_  A ) )
2925, 27, 28sylc 60 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  t  ~<_  A )
30 canth2g 7671 . . . . . . . . . . . . . 14  |-  ( A  e.  _V  ->  A  ~<  ~P A )
31 sdomdom 7543 . . . . . . . . . . . . . 14  |-  ( A 
~<  ~P A  ->  A  ~<_  ~P A )
3225, 30, 313syl 20 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  A  ~<_  ~P A )
33 domtr 7568 . . . . . . . . . . . . 13  |-  ( ( t  ~<_  A  /\  A  ~<_  ~P A )  ->  t  ~<_  ~P A )
3429, 32, 33syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  t  ~<_  ~P A )
35 endomtr 7573 . . . . . . . . . . . 12  |-  ( ( dom  O  ~~  t  /\  t  ~<_  ~P A
)  ->  dom  O  ~<_  ~P A )
3617, 34, 35syl2anc 661 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  dom  O  ~<_  ~P A
)
37 elharval 7989 . . . . . . . . . . 11  |-  ( dom 
O  e.  (har `  ~P A )  <->  ( dom  O  e.  On  /\  dom  O  ~<_  ~P A ) )
3815, 36, 37sylanbrc 664 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  dom  O  e.  (har
`  ~P A ) )
39 pwfseqlem5.n . . . . . . . . . . 11  |-  ( ph  ->  A. b  e.  (har
`  ~P A ) ( om  C_  b  ->  ( N `  b
) : ( b  X.  b ) -1-1-onto-> b ) )
4039adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  A. b  e.  (har
`  ~P A ) ( om  C_  b  ->  ( N `  b
) : ( b  X.  b ) -1-1-onto-> b ) )
41 cardom 8367 . . . . . . . . . . . 12  |-  ( card `  om )  =  om
42 simprr 756 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
t  C_  A  /\  r  C_  ( t  X.  t )  /\  r  We  t )  /\  om  ~<_  t ) )  ->  om 
~<_  t )
434, 42sylan2b 475 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  om  ~<_  t )
4417ensymd 7566 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  t  ~~  dom  O
)
45 domentr 7574 . . . . . . . . . . . . . 14  |-  ( ( om  ~<_  t  /\  t  ~~  dom  O )  ->  om 
~<_  dom  O )
4643, 44, 45syl2anc 661 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  om  ~<_  dom  O )
47 omelon 8063 . . . . . . . . . . . . . . 15  |-  om  e.  On
48 onenon 8330 . . . . . . . . . . . . . . 15  |-  ( om  e.  On  ->  om  e.  dom  card )
4947, 48ax-mp 5 . . . . . . . . . . . . . 14  |-  om  e.  dom  card
50 onenon 8330 . . . . . . . . . . . . . . 15  |-  ( dom 
O  e.  On  ->  dom 
O  e.  dom  card )
5114, 50mp1i 12 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  dom  O  e.  dom  card )
52 carddom2 8358 . . . . . . . . . . . . . 14  |-  ( ( om  e.  dom  card  /\ 
dom  O  e.  dom  card )  ->  ( ( card `  om )  C_  ( card `  dom  O )  <->  om 
~<_  dom  O ) )
5349, 51, 52sylancr 663 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( ( card `  om )  C_  ( card `  dom  O )  <->  om  ~<_  dom  O )
)
5446, 53mpbird 232 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( card `  om )  C_  ( card `  dom  O ) )
5541, 54syl5eqssr 3549 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  om  C_  ( card ` 
dom  O ) )
56 cardonle 8338 . . . . . . . . . . . 12  |-  ( dom 
O  e.  On  ->  (
card `  dom  O ) 
C_  dom  O )
5715, 56syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  ( card `  dom  O )  C_  dom  O )
5855, 57sstrd 3514 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  om  C_  dom  O )
59 sseq2 3526 . . . . . . . . . . . 12  |-  ( b  =  dom  O  -> 
( om  C_  b  <->  om  C_  dom  O ) )
60 fveq2 5866 . . . . . . . . . . . . . 14  |-  ( b  =  dom  O  -> 
( N `  b
)  =  ( N `
 dom  O )
)
61 f1oeq1 5807 . . . . . . . . . . . . . 14  |-  ( ( N `  b )  =  ( N `  dom  O )  ->  (
( N `  b
) : ( b  X.  b ) -1-1-onto-> b  <->  ( N `  dom  O ) : ( b  X.  b
)
-1-1-onto-> b ) )
6260, 61syl 16 . . . . . . . . . . . . 13  |-  ( b  =  dom  O  -> 
( ( N `  b ) : ( b  X.  b ) -1-1-onto-> b  <-> 
( N `  dom  O ) : ( b  X.  b ) -1-1-onto-> b ) )
63 xpeq12 5018 . . . . . . . . . . . . . . 15  |-  ( ( b  =  dom  O  /\  b  =  dom  O )  ->  ( b  X.  b )  =  ( dom  O  X.  dom  O ) )
6463anidms 645 . . . . . . . . . . . . . 14  |-  ( b  =  dom  O  -> 
( b  X.  b
)  =  ( dom 
O  X.  dom  O
) )
65 f1oeq2 5808 . . . . . . . . . . . . . 14  |-  ( ( b  X.  b )  =  ( dom  O  X.  dom  O )  -> 
( ( N `  dom  O ) : ( b  X.  b ) -1-1-onto-> b  <-> 
( N `  dom  O ) : ( dom 
O  X.  dom  O
)
-1-1-onto-> b ) )
6664, 65syl 16 . . . . . . . . . . . . 13  |-  ( b  =  dom  O  -> 
( ( N `  dom  O ) : ( b  X.  b ) -1-1-onto-> b  <-> 
( N `  dom  O ) : ( dom 
O  X.  dom  O
)
-1-1-onto-> b ) )
67 f1oeq3 5809 . . . . . . . . . . . . 13  |-  ( b  =  dom  O  -> 
( ( N `  dom  O ) : ( dom  O  X.  dom  O ) -1-1-onto-> b  <->  ( N `  dom  O ) : ( dom  O  X.  dom  O ) -1-1-onto-> dom  O ) )
6862, 66, 673bitrd 279 . . . . . . . . . . . 12  |-  ( b  =  dom  O  -> 
( ( N `  b ) : ( b  X.  b ) -1-1-onto-> b  <-> 
( N `  dom  O ) : ( dom 
O  X.  dom  O
)
-1-1-onto-> dom  O ) )
6959, 68imbi12d 320 . . . . . . . . . . 11  |-  ( b  =  dom  O  -> 
( ( om  C_  b  ->  ( N `  b
) : ( b  X.  b ) -1-1-onto-> b )  <-> 
( om  C_  dom  O  ->  ( N `  dom  O ) : ( dom  O  X.  dom  O ) -1-1-onto-> dom  O ) ) )
7069rspcv 3210 . . . . . . . . . 10  |-  ( dom 
O  e.  (har `  ~P A )  ->  ( A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( N `  b ) : ( b  X.  b ) -1-1-onto-> b )  ->  ( om  C_  dom  O  -> 
( N `  dom  O ) : ( dom 
O  X.  dom  O
)
-1-1-onto-> dom  O ) ) )
7138, 40, 58, 70syl3c 61 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  ( N `  dom  O ) : ( dom 
O  X.  dom  O
)
-1-1-onto-> dom  O )
72 f1oco 5838 . . . . . . . . 9  |-  ( ( O : dom  O -1-1-onto-> t  /\  ( N `  dom  O ) : ( dom 
O  X.  dom  O
)
-1-1-onto-> dom  O )  ->  ( O  o.  ( N `  dom  O ) ) : ( dom  O  X.  dom  O ) -1-1-onto-> t )
7312, 71, 72syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  ( O  o.  ( N `  dom  O ) ) : ( dom 
O  X.  dom  O
)
-1-1-onto-> t )
74 f1of 5816 . . . . . . . . . . . . . . 15  |-  ( O : dom  O -1-1-onto-> t  ->  O : dom  O --> t )
7512, 74syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  O : dom  O --> t )
7675feqmptd 5920 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  O  =  ( u  e.  dom  O  |->  ( O `  u ) ) )
77 f1oeq1 5807 . . . . . . . . . . . . 13  |-  ( O  =  ( u  e. 
dom  O  |->  ( O `
 u ) )  ->  ( O : dom  O -1-1-onto-> t  <->  ( u  e. 
dom  O  |->  ( O `
 u ) ) : dom  O -1-1-onto-> t ) )
7876, 77syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( O : dom  O -1-1-onto-> t  <-> 
( u  e.  dom  O 
|->  ( O `  u
) ) : dom  O -1-1-onto-> t ) )
7912, 78mpbid 210 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  ( u  e.  dom  O 
|->  ( O `  u
) ) : dom  O -1-1-onto-> t )
8075feqmptd 5920 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  O  =  ( v  e.  dom  O  |->  ( O `  v ) ) )
81 f1oeq1 5807 . . . . . . . . . . . . 13  |-  ( O  =  ( v  e. 
dom  O  |->  ( O `
 v ) )  ->  ( O : dom  O -1-1-onto-> t  <->  ( v  e. 
dom  O  |->  ( O `
 v ) ) : dom  O -1-1-onto-> t ) )
8280, 81syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( O : dom  O -1-1-onto-> t  <-> 
( v  e.  dom  O 
|->  ( O `  v
) ) : dom  O -1-1-onto-> t ) )
8312, 82mpbid 210 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  ( v  e.  dom  O 
|->  ( O `  v
) ) : dom  O -1-1-onto-> t )
8479, 83xpf1o 7679 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  ( u  e.  dom  O ,  v  e.  dom  O 
|->  <. ( O `  u ) ,  ( O `  v )
>. ) : ( dom 
O  X.  dom  O
)
-1-1-onto-> ( t  X.  t
) )
85 pwfseqlem5.t . . . . . . . . . . 11  |-  T  =  ( u  e.  dom  O ,  v  e.  dom  O 
|->  <. ( O `  u ) ,  ( O `  v )
>. )
86 f1oeq1 5807 . . . . . . . . . . 11  |-  ( T  =  ( u  e. 
dom  O ,  v  e.  dom  O  |->  <.
( O `  u
) ,  ( O `
 v ) >.
)  ->  ( T : ( dom  O  X.  dom  O ) -1-1-onto-> ( t  X.  t )  <->  ( u  e.  dom  O ,  v  e.  dom  O  |->  <.
( O `  u
) ,  ( O `
 v ) >.
) : ( dom 
O  X.  dom  O
)
-1-1-onto-> ( t  X.  t
) ) )
8785, 86ax-mp 5 . . . . . . . . . 10  |-  ( T : ( dom  O  X.  dom  O ) -1-1-onto-> ( t  X.  t )  <->  ( u  e.  dom  O ,  v  e.  dom  O  |->  <.
( O `  u
) ,  ( O `
 v ) >.
) : ( dom 
O  X.  dom  O
)
-1-1-onto-> ( t  X.  t
) )
8884, 87sylibr 212 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  T : ( dom 
O  X.  dom  O
)
-1-1-onto-> ( t  X.  t
) )
89 f1ocnv 5828 . . . . . . . . 9  |-  ( T : ( dom  O  X.  dom  O ) -1-1-onto-> ( t  X.  t )  ->  `' T : ( t  X.  t ) -1-1-onto-> ( dom 
O  X.  dom  O
) )
9088, 89syl 16 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  `' T : ( t  X.  t ) -1-1-onto-> ( dom 
O  X.  dom  O
) )
91 f1oco 5838 . . . . . . . 8  |-  ( ( ( O  o.  ( N `  dom  O ) ) : ( dom 
O  X.  dom  O
)
-1-1-onto-> t  /\  `' T :
( t  X.  t
)
-1-1-onto-> ( dom  O  X.  dom  O ) )  ->  (
( O  o.  ( N `  dom  O ) )  o.  `' T
) : ( t  X.  t ) -1-1-onto-> t )
9273, 90, 91syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  ( ( O  o.  ( N `  dom  O
) )  o.  `' T ) : ( t  X.  t ) -1-1-onto-> t )
93 pwfseqlem5.p . . . . . . . 8  |-  P  =  ( ( O  o.  ( N `  dom  O
) )  o.  `' T )
94 f1oeq1 5807 . . . . . . . 8  |-  ( P  =  ( ( O  o.  ( N `  dom  O ) )  o.  `' T )  ->  ( P : ( t  X.  t ) -1-1-onto-> t  <->  ( ( O  o.  ( N `  dom  O ) )  o.  `' T ) : ( t  X.  t ) -1-1-onto-> t ) )
9593, 94ax-mp 5 . . . . . . 7  |-  ( P : ( t  X.  t ) -1-1-onto-> t  <->  ( ( O  o.  ( N `  dom  O ) )  o.  `' T ) : ( t  X.  t ) -1-1-onto-> t )
9692, 95sylibr 212 . . . . . 6  |-  ( (
ph  /\  ps )  ->  P : ( t  X.  t ) -1-1-onto-> t )
97 f1of1 5815 . . . . . 6  |-  ( P : ( t  X.  t ) -1-1-onto-> t  ->  P :
( t  X.  t
) -1-1-> t )
9896, 97syl 16 . . . . 5  |-  ( (
ph  /\  ps )  ->  P : ( t  X.  t ) -1-1-> t )
99 f1of1 5815 . . . . . . . . . . . . 13  |-  ( O : dom  O -1-1-onto-> t  ->  O : dom  O -1-1-> t )
10012, 99syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  O : dom  O -1-1-> t )
101 f1ssres 5788 . . . . . . . . . . . 12  |-  ( ( O : dom  O -1-1-> t  /\  om  C_  dom  O )  ->  ( O  |` 
om ) : om -1-1-> t )
102100, 58, 101syl2anc 661 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  ( O  |`  om ) : om -1-1-> t )
103 f1f1orn 5827 . . . . . . . . . . 11  |-  ( ( O  |`  om ) : om -1-1-> t  ->  ( O  |`  om ) : om -1-1-onto-> ran  ( O  |`  om ) )
104102, 103syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  ( O  |`  om ) : om -1-1-onto-> ran  ( O  |`  om ) )
10575, 58feqresmpt 5921 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  ( O  |`  om )  =  ( x  e. 
om  |->  ( O `  x ) ) )
106 f1oeq1 5807 . . . . . . . . . . 11  |-  ( ( O  |`  om )  =  ( x  e. 
om  |->  ( O `  x ) )  -> 
( ( O  |`  om ) : om -1-1-onto-> ran  ( O  |`  om )  <->  ( x  e. 
om  |->  ( O `  x ) ) : om -1-1-onto-> ran  ( O  |`  om ) ) )
107105, 106syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  ( ( O  |`  om ) : om -1-1-onto-> ran  ( O  |`  om )  <->  ( x  e. 
om  |->  ( O `  x ) ) : om -1-1-onto-> ran  ( O  |`  om ) ) )
108104, 107mpbid 210 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  ( x  e.  om  |->  ( O `  x ) ) : om -1-1-onto-> ran  ( O  |`  om ) )
109 mptresid 5328 . . . . . . . . . 10  |-  ( y  e.  t  |->  y )  =  (  _I  |`  t
)
110 f1oi 5851 . . . . . . . . . . 11  |-  (  _I  |`  t ) : t -1-1-onto-> t
111 f1oeq1 5807 . . . . . . . . . . 11  |-  ( ( y  e.  t  |->  y )  =  (  _I  |`  t )  ->  (
( y  e.  t 
|->  y ) : t -1-1-onto-> t  <-> 
(  _I  |`  t
) : t -1-1-onto-> t ) )
112110, 111mpbiri 233 . . . . . . . . . 10  |-  ( ( y  e.  t  |->  y )  =  (  _I  |`  t )  ->  (
y  e.  t  |->  y ) : t -1-1-onto-> t )
113109, 112mp1i 12 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  ( y  e.  t 
|->  y ) : t -1-1-onto-> t )
114108, 113xpf1o 7679 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  ( x  e.  om ,  y  e.  t  |-> 
<. ( O `  x
) ,  y >.
) : ( om 
X.  t ) -1-1-onto-> ( ran  ( O  |`  om )  X.  t ) )
115 pwfseqlem5.i . . . . . . . . 9  |-  I  =  ( x  e.  om ,  y  e.  t  |-> 
<. ( O `  x
) ,  y >.
)
116 f1oeq1 5807 . . . . . . . . 9  |-  ( I  =  ( x  e. 
om ,  y  e.  t  |->  <. ( O `  x ) ,  y
>. )  ->  ( I : ( om  X.  t ) -1-1-onto-> ( ran  ( O  |`  om )  X.  t
)  <->  ( x  e. 
om ,  y  e.  t  |->  <. ( O `  x ) ,  y
>. ) : ( om 
X.  t ) -1-1-onto-> ( ran  ( O  |`  om )  X.  t ) ) )
117115, 116ax-mp 5 . . . . . . . 8  |-  ( I : ( om  X.  t ) -1-1-onto-> ( ran  ( O  |`  om )  X.  t
)  <->  ( x  e. 
om ,  y  e.  t  |->  <. ( O `  x ) ,  y
>. ) : ( om 
X.  t ) -1-1-onto-> ( ran  ( O  |`  om )  X.  t ) )
118114, 117sylibr 212 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  I : ( om 
X.  t ) -1-1-onto-> ( ran  ( O  |`  om )  X.  t ) )
119 f1of1 5815 . . . . . . 7  |-  ( I : ( om  X.  t ) -1-1-onto-> ( ran  ( O  |`  om )  X.  t
)  ->  I :
( om  X.  t
) -1-1-> ( ran  ( O  |`  om )  X.  t ) )
120118, 119syl 16 . . . . . 6  |-  ( (
ph  /\  ps )  ->  I : ( om 
X.  t ) -1-1-> ( ran  ( O  |`  om )  X.  t
) )
121 f1f 5781 . . . . . . 7  |-  ( ( O  |`  om ) : om -1-1-> t  ->  ( O  |`  om ) : om --> t )
122 frn 5737 . . . . . . 7  |-  ( ( O  |`  om ) : om --> t  ->  ran  ( O  |`  om )  C_  t )
123 xpss1 5111 . . . . . . 7  |-  ( ran  ( O  |`  om )  C_  t  ->  ( ran  ( O  |`  om )  X.  t )  C_  (
t  X.  t ) )
124102, 121, 122, 1234syl 21 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( ran  ( O  |`  om )  X.  t
)  C_  ( t  X.  t ) )
125 f1ss 5786 . . . . . 6  |-  ( ( I : ( om 
X.  t ) -1-1-> ( ran  ( O  |`  om )  X.  t
)  /\  ( ran  ( O  |`  om )  X.  t )  C_  (
t  X.  t ) )  ->  I :
( om  X.  t
) -1-1-> ( t  X.  t ) )
126120, 124, 125syl2anc 661 . . . . 5  |-  ( (
ph  /\  ps )  ->  I : ( om 
X.  t ) -1-1-> ( t  X.  t ) )
127 f1co 5790 . . . . 5  |-  ( ( P : ( t  X.  t ) -1-1-> t  /\  I : ( om  X.  t )
-1-1-> ( t  X.  t
) )  ->  ( P  o.  I ) : ( om  X.  t ) -1-1-> t )
12898, 126, 127syl2anc 661 . . . 4  |-  ( (
ph  /\  ps )  ->  ( P  o.  I
) : ( om 
X.  t ) -1-1-> t )
1295a1i 11 . . . . 5  |-  ( (
ph  /\  ps )  ->  t  e.  _V )
130 peano1 6703 . . . . . . . 8  |-  (/)  e.  om
131130a1i 11 . . . . . . 7  |-  ( (
ph  /\  ps )  -> 
(/)  e.  om )
13258, 131sseldd 3505 . . . . . 6  |-  ( (
ph  /\  ps )  -> 
(/)  e.  dom  O )
13375, 132ffvelrnd 6022 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( O `  (/) )  e.  t )
134 pwfseqlem5.s . . . . 5  |-  S  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  ( x  e.  (
t  ^m  suc  k ) 
|->  ( ( f `  ( x  |`  k ) ) P ( x `
 k ) ) ) ) ,  { <.
(/) ,  ( O `  (/) ) >. } )
135 pwfseqlem5.q . . . . 5  |-  Q  =  ( y  e.  U_ n  e.  om  (
t  ^m  n )  |-> 
<. dom  y ,  ( ( S `  dom  y ) `  y
) >. )
136129, 133, 96, 134, 135fseqenlem2 8406 . . . 4  |-  ( (
ph  /\  ps )  ->  Q : U_ n  e.  om  ( t  ^m  n ) -1-1-> ( om 
X.  t ) )
137 f1co 5790 . . . 4  |-  ( ( ( P  o.  I
) : ( om 
X.  t ) -1-1-> t  /\  Q : U_ n  e.  om  (
t  ^m  n ) -1-1-> ( om  X.  t
) )  ->  (
( P  o.  I
)  o.  Q ) : U_ n  e. 
om  ( t  ^m  n ) -1-1-> t )
138128, 136, 137syl2anc 661 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( P  o.  I )  o.  Q
) : U_ n  e.  om  ( t  ^m  n ) -1-1-> t )
139 pwfseqlem5.k . . . 4  |-  K  =  ( ( P  o.  I )  o.  Q
)
140 f1eq1 5776 . . . 4  |-  ( K  =  ( ( P  o.  I )  o.  Q )  ->  ( K : U_ n  e. 
om  ( t  ^m  n ) -1-1-> t  <->  ( ( P  o.  I )  o.  Q ) : U_ n  e.  om  (
t  ^m  n ) -1-1-> t ) )
141139, 140ax-mp 5 . . 3  |-  ( K : U_ n  e. 
om  ( t  ^m  n ) -1-1-> t  <->  ( ( P  o.  I )  o.  Q ) : U_ n  e.  om  (
t  ^m  n ) -1-1-> t )
142138, 141sylibr 212 . 2  |-  ( (
ph  /\  ps )  ->  K : U_ n  e.  om  ( t  ^m  n ) -1-1-> t )
143 eqid 2467 . 2  |-  ( G `
 { i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } )  =  ( G `  { i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } )
144 eqid 2467 . 2  |-  ( t  e.  _V ,  r  e.  _V  |->  if ( t  e.  Fin , 
( H `  ( card `  t ) ) ,  ( ( G `
 { i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 |^| { z  e. 
om  |  -.  (
( G `  {
i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 z )  e.  t } ) ) )  =  ( t  e.  _V ,  r  e.  _V  |->  if ( t  e.  Fin , 
( H `  ( card `  t ) ) ,  ( ( G `
 { i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 |^| { z  e. 
om  |  -.  (
( G `  {
i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 z )  e.  t } ) ) )
145 eqid 2467 . . 3  |-  { <. c ,  d >.  |  ( ( c  C_  A  /\  d  C_  ( c  X.  c ) )  /\  ( d  We  c  /\  A. m  e.  c  [. ( `' d " { m } )  /  j ]. ( j ( t  e.  _V ,  r  e.  _V  |->  if ( t  e.  Fin , 
( H `  ( card `  t ) ) ,  ( ( G `
 { i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 |^| { z  e. 
om  |  -.  (
( G `  {
i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 z )  e.  t } ) ) ) ( d  i^i  ( j  X.  j
) ) )  =  m ) ) }  =  { <. c ,  d >.  |  ( ( c  C_  A  /\  d  C_  ( c  X.  c ) )  /\  ( d  We  c  /\  A. m  e.  c  [. ( `' d " { m } )  /  j ]. ( j ( t  e.  _V ,  r  e.  _V  |->  if ( t  e.  Fin , 
( H `  ( card `  t ) ) ,  ( ( G `
 { i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 |^| { z  e. 
om  |  -.  (
( G `  {
i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 z )  e.  t } ) ) ) ( d  i^i  ( j  X.  j
) ) )  =  m ) ) }
146145fpwwe2cbv 9008 . 2  |-  { <. c ,  d >.  |  ( ( c  C_  A  /\  d  C_  ( c  X.  c ) )  /\  ( d  We  c  /\  A. m  e.  c  [. ( `' d " { m } )  /  j ]. ( j ( t  e.  _V ,  r  e.  _V  |->  if ( t  e.  Fin , 
( H `  ( card `  t ) ) ,  ( ( G `
 { i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 |^| { z  e. 
om  |  -.  (
( G `  {
i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 z )  e.  t } ) ) ) ( d  i^i  ( j  X.  j
) ) )  =  m ) ) }  =  { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. b  e.  a  [. ( `' s " { b } )  /  w ]. ( w ( t  e.  _V ,  r  e.  _V  |->  if ( t  e.  Fin , 
( H `  ( card `  t ) ) ,  ( ( G `
 { i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 |^| { z  e. 
om  |  -.  (
( G `  {
i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 z )  e.  t } ) ) ) ( s  i^i  ( w  X.  w
) ) )  =  b ) ) }
147 eqid 2467 . 2  |-  U. dom  {
<. c ,  d >.  |  ( ( c 
C_  A  /\  d  C_  ( c  X.  c
) )  /\  (
d  We  c  /\  A. m  e.  c  [. ( `' d " {
m } )  / 
j ]. ( j ( t  e.  _V , 
r  e.  _V  |->  if ( t  e.  Fin ,  ( H `  ( card `  t ) ) ,  ( ( G `
 { i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 |^| { z  e. 
om  |  -.  (
( G `  {
i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 z )  e.  t } ) ) ) ( d  i^i  ( j  X.  j
) ) )  =  m ) ) }  =  U. dom  { <. c ,  d >.  |  ( ( c 
C_  A  /\  d  C_  ( c  X.  c
) )  /\  (
d  We  c  /\  A. m  e.  c  [. ( `' d " {
m } )  / 
j ]. ( j ( t  e.  _V , 
r  e.  _V  |->  if ( t  e.  Fin ,  ( H `  ( card `  t ) ) ,  ( ( G `
 { i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 |^| { z  e. 
om  |  -.  (
( G `  {
i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 z )  e.  t } ) ) ) ( d  i^i  ( j  X.  j
) ) )  =  m ) ) }
1481, 2, 3, 4, 142, 143, 144, 146, 147pwfseqlem4 9040 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   {crab 2818   _Vcvv 3113   [.wsbc 3331    i^i cin 3475    C_ wss 3476   (/)c0 3785   ifcif 3939   ~Pcpw 4010   {csn 4027   <.cop 4033   U.cuni 4245   |^|cint 4282   U_ciun 4325   class class class wbr 4447   {copab 4504    |-> cmpt 4505    _E cep 4789    _I cid 4790    We wwe 4837   Oncon0 4878   suc csuc 4880    X. cxp 4997   `'ccnv 4998   dom cdm 4999   ran crn 5000    |` cres 5001   "cima 5002    o. ccom 5003   -->wf 5584   -1-1->wf1 5585   -1-1-onto->wf1o 5587   ` cfv 5588    Isom wiso 5589  (class class class)co 6284    |-> cmpt2 6286   omcom 6684  seq𝜔cseqom 7112    ^m cmap 7420    ~~ cen 7513    ~<_ cdom 7514    ~< csdm 7515   Fincfn 7516  OrdIsocoi 7934  harchar 7982   cardccrd 8316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-seqom 7113  df-1o 7130  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-oi 7935  df-har 7984  df-card 8320
This theorem is referenced by:  pwfseq  9042
  Copyright terms: Public domain W3C validator