MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem5 Unicode version

Theorem pwfseqlem5 8494
Description: Lemma for pwfseq 8495. Although in some ways pwfseqlem4 8493 is the "main" part of the proof, one last aspect which makes up a remark in the original text is by far the hardest part to formalize. The main proof relies on the existence of an injection  K from the set of finite sequences on an infinite set 
x to  x. Now this alone would not be difficult to prove; this is mostly the claim of fseqen 7864. However, what is needed for the proof is a canonical injection on these sets, so we have to start from scratch pulling together explicit bijections from the lemmas.

If one attempts such a program, it will mostly go through, but there is one key step which is inherently nonconstructive, namely the proof of infxpen 7852. The resolution is not obvious, but it turns out that reversing an infinite ordinal's Cantor normal form absorbs all the non-leading terms (cnfcom3c 7619), which can be used to construct a pairing function explicitly using properties of the ordinal exponential (infxpenc 7855). (Contributed by Mario Carneiro, 31-May-2015.)

Hypotheses
Ref Expression
pwfseqlem5.g  |-  ( ph  ->  G : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
pwfseqlem5.x  |-  ( ph  ->  X  C_  A )
pwfseqlem5.h  |-  ( ph  ->  H : om -1-1-onto-> X )
pwfseqlem5.ps  |-  ( ps  <->  ( ( t  C_  A  /\  r  C_  ( t  X.  t )  /\  r  We  t )  /\  om  ~<_  t ) )
pwfseqlem5.n  |-  ( ph  ->  A. b  e.  (har
`  ~P A ) ( om  C_  b  ->  ( N `  b
) : ( b  X.  b ) -1-1-onto-> b ) )
pwfseqlem5.o  |-  O  = OrdIso
( r ,  t )
pwfseqlem5.t  |-  T  =  ( u  e.  dom  O ,  v  e.  dom  O 
|->  <. ( O `  u ) ,  ( O `  v )
>. )
pwfseqlem5.p  |-  P  =  ( ( O  o.  ( N `  dom  O
) )  o.  `' T )
pwfseqlem5.s  |-  S  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  ( x  e.  (
t  ^m  suc  k ) 
|->  ( ( f `  ( x  |`  k ) ) P ( x `
 k ) ) ) ) ,  { <.
(/) ,  ( O `  (/) ) >. } )
pwfseqlem5.q  |-  Q  =  ( y  e.  U_ n  e.  om  (
t  ^m  n )  |-> 
<. dom  y ,  ( ( S `  dom  y ) `  y
) >. )
pwfseqlem5.i  |-  I  =  ( x  e.  om ,  y  e.  t  |-> 
<. ( O `  x
) ,  y >.
)
pwfseqlem5.k  |-  K  =  ( ( P  o.  I )  o.  Q
)
Assertion
Ref Expression
pwfseqlem5  |-  -.  ph
Distinct variable groups:    n, b, G    r, b, t, H   
f, k, x, P   
f, b, k, u, v, x, y, n, r, t    ph, b,
k, n, r, t, x, y    K, b, n    N, b    ps, k, n, x, y    S, n, y    A, b, n, r, t    O, b, u, v, x, y
Allowed substitution hints:    ph( v, u, f)    ps( v, u, t, f, r, b)    A( x, y, v, u, f, k)    P( y, v, u, t, n, r, b)    Q( x, y, v, u, t, f, k, n, r, b)    S( x, v, u, t, f, k, r, b)    T( x, y, v, u, t, f, k, n, r, b)    G( x, y, v, u, t, f, k, r)    H( x, y, v, u, f, k, n)    I( x, y, v, u, t, f, k, n, r, b)    K( x, y, v, u, t, f, k, r)    N( x, y, v, u, t, f, k, n, r)    O( t, f, k, n, r)    X( x, y, v, u, t, f, k, n, r, b)

Proof of Theorem pwfseqlem5
Dummy variables  a 
c  d  i  j  m  s  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwfseqlem5.g . 2  |-  ( ph  ->  G : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
2 pwfseqlem5.x . 2  |-  ( ph  ->  X  C_  A )
3 pwfseqlem5.h . 2  |-  ( ph  ->  H : om -1-1-onto-> X )
4 pwfseqlem5.ps . 2  |-  ( ps  <->  ( ( t  C_  A  /\  r  C_  ( t  X.  t )  /\  r  We  t )  /\  om  ~<_  t ) )
5 vex 2919 . . . . . . . . . . 11  |-  t  e. 
_V
6 simprl3 1004 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
t  C_  A  /\  r  C_  ( t  X.  t )  /\  r  We  t )  /\  om  ~<_  t ) )  -> 
r  We  t )
74, 6sylan2b 462 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  r  We  t )
8 pwfseqlem5.o . . . . . . . . . . . 12  |-  O  = OrdIso
( r ,  t )
98oiiso 7462 . . . . . . . . . . 11  |-  ( ( t  e.  _V  /\  r  We  t )  ->  O  Isom  _E  ,  r  ( dom  O , 
t ) )
105, 7, 9sylancr 645 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  O  Isom  _E  ,  r  ( dom  O , 
t ) )
11 isof1o 6004 . . . . . . . . . 10  |-  ( O 
Isom  _E  ,  r 
( dom  O , 
t )  ->  O : dom  O -1-1-onto-> t )
1210, 11syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  O : dom  O -1-1-onto-> t
)
138oion 7461 . . . . . . . . . . . . 13  |-  ( t  e.  _V  ->  dom  O  e.  On )
145, 13ax-mp 8 . . . . . . . . . . . 12  |-  dom  O  e.  On
1514a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  dom  O  e.  On )
168oien 7463 . . . . . . . . . . . . 13  |-  ( ( t  e.  _V  /\  r  We  t )  ->  dom  O  ~~  t
)
175, 7, 16sylancr 645 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  dom  O  ~~  t
)
181adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ps )  ->  G : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
19 omex 7554 . . . . . . . . . . . . . . . . 17  |-  om  e.  _V
20 ovex 6065 . . . . . . . . . . . . . . . . 17  |-  ( A  ^m  n )  e. 
_V
2119, 20iunex 5950 . . . . . . . . . . . . . . . 16  |-  U_ n  e.  om  ( A  ^m  n )  e.  _V
22 f1dmex 5930 . . . . . . . . . . . . . . . 16  |-  ( ( G : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n )  /\  U_ n  e.  om  ( A  ^m  n )  e. 
_V )  ->  ~P A  e.  _V )
2318, 21, 22sylancl 644 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ps )  ->  ~P A  e.  _V )
24 pwexb 4712 . . . . . . . . . . . . . . 15  |-  ( A  e.  _V  <->  ~P A  e.  _V )
2523, 24sylibr 204 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  A  e.  _V )
26 simprl1 1002 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
t  C_  A  /\  r  C_  ( t  X.  t )  /\  r  We  t )  /\  om  ~<_  t ) )  -> 
t  C_  A )
274, 26sylan2b 462 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  t  C_  A )
28 ssdomg 7112 . . . . . . . . . . . . . 14  |-  ( A  e.  _V  ->  (
t  C_  A  ->  t  ~<_  A ) )
2925, 27, 28sylc 58 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  t  ~<_  A )
30 canth2g 7220 . . . . . . . . . . . . . 14  |-  ( A  e.  _V  ->  A  ~<  ~P A )
31 sdomdom 7094 . . . . . . . . . . . . . 14  |-  ( A 
~<  ~P A  ->  A  ~<_  ~P A )
3225, 30, 313syl 19 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  A  ~<_  ~P A )
33 domtr 7119 . . . . . . . . . . . . 13  |-  ( ( t  ~<_  A  /\  A  ~<_  ~P A )  ->  t  ~<_  ~P A )
3429, 32, 33syl2anc 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  t  ~<_  ~P A )
35 endomtr 7124 . . . . . . . . . . . 12  |-  ( ( dom  O  ~~  t  /\  t  ~<_  ~P A
)  ->  dom  O  ~<_  ~P A )
3617, 34, 35syl2anc 643 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  dom  O  ~<_  ~P A
)
37 elharval 7487 . . . . . . . . . . 11  |-  ( dom 
O  e.  (har `  ~P A )  <->  ( dom  O  e.  On  /\  dom  O  ~<_  ~P A ) )
3815, 36, 37sylanbrc 646 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  dom  O  e.  (har
`  ~P A ) )
39 pwfseqlem5.n . . . . . . . . . . 11  |-  ( ph  ->  A. b  e.  (har
`  ~P A ) ( om  C_  b  ->  ( N `  b
) : ( b  X.  b ) -1-1-onto-> b ) )
4039adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  A. b  e.  (har
`  ~P A ) ( om  C_  b  ->  ( N `  b
) : ( b  X.  b ) -1-1-onto-> b ) )
41 cardom 7829 . . . . . . . . . . . 12  |-  ( card `  om )  =  om
42 simprr 734 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
t  C_  A  /\  r  C_  ( t  X.  t )  /\  r  We  t )  /\  om  ~<_  t ) )  ->  om 
~<_  t )
434, 42sylan2b 462 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  om  ~<_  t )
4417ensymd 7117 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  t  ~~  dom  O
)
45 domentr 7125 . . . . . . . . . . . . . 14  |-  ( ( om  ~<_  t  /\  t  ~~  dom  O )  ->  om 
~<_  dom  O )
4643, 44, 45syl2anc 643 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  om  ~<_  dom  O )
47 omelon 7557 . . . . . . . . . . . . . . 15  |-  om  e.  On
48 onenon 7792 . . . . . . . . . . . . . . 15  |-  ( om  e.  On  ->  om  e.  dom  card )
4947, 48ax-mp 8 . . . . . . . . . . . . . 14  |-  om  e.  dom  card
50 onenon 7792 . . . . . . . . . . . . . . 15  |-  ( dom 
O  e.  On  ->  dom 
O  e.  dom  card )
5114, 50mp1i 12 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  dom  O  e.  dom  card )
52 carddom2 7820 . . . . . . . . . . . . . 14  |-  ( ( om  e.  dom  card  /\ 
dom  O  e.  dom  card )  ->  ( ( card `  om )  C_  ( card `  dom  O )  <->  om 
~<_  dom  O ) )
5349, 51, 52sylancr 645 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( ( card `  om )  C_  ( card `  dom  O )  <->  om  ~<_  dom  O )
)
5446, 53mpbird 224 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( card `  om )  C_  ( card `  dom  O ) )
5541, 54syl5eqssr 3353 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  om  C_  ( card ` 
dom  O ) )
56 cardonle 7800 . . . . . . . . . . . 12  |-  ( dom 
O  e.  On  ->  (
card `  dom  O ) 
C_  dom  O )
5715, 56syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  ( card `  dom  O )  C_  dom  O )
5855, 57sstrd 3318 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  om  C_  dom  O )
59 sseq2 3330 . . . . . . . . . . . 12  |-  ( b  =  dom  O  -> 
( om  C_  b  <->  om  C_  dom  O ) )
60 fveq2 5687 . . . . . . . . . . . . . 14  |-  ( b  =  dom  O  -> 
( N `  b
)  =  ( N `
 dom  O )
)
61 f1oeq1 5624 . . . . . . . . . . . . . 14  |-  ( ( N `  b )  =  ( N `  dom  O )  ->  (
( N `  b
) : ( b  X.  b ) -1-1-onto-> b  <->  ( N `  dom  O ) : ( b  X.  b
)
-1-1-onto-> b ) )
6260, 61syl 16 . . . . . . . . . . . . 13  |-  ( b  =  dom  O  -> 
( ( N `  b ) : ( b  X.  b ) -1-1-onto-> b  <-> 
( N `  dom  O ) : ( b  X.  b ) -1-1-onto-> b ) )
63 xpeq12 4856 . . . . . . . . . . . . . . 15  |-  ( ( b  =  dom  O  /\  b  =  dom  O )  ->  ( b  X.  b )  =  ( dom  O  X.  dom  O ) )
6463anidms 627 . . . . . . . . . . . . . 14  |-  ( b  =  dom  O  -> 
( b  X.  b
)  =  ( dom 
O  X.  dom  O
) )
65 f1oeq2 5625 . . . . . . . . . . . . . 14  |-  ( ( b  X.  b )  =  ( dom  O  X.  dom  O )  -> 
( ( N `  dom  O ) : ( b  X.  b ) -1-1-onto-> b  <-> 
( N `  dom  O ) : ( dom 
O  X.  dom  O
)
-1-1-onto-> b ) )
6664, 65syl 16 . . . . . . . . . . . . 13  |-  ( b  =  dom  O  -> 
( ( N `  dom  O ) : ( b  X.  b ) -1-1-onto-> b  <-> 
( N `  dom  O ) : ( dom 
O  X.  dom  O
)
-1-1-onto-> b ) )
67 f1oeq3 5626 . . . . . . . . . . . . 13  |-  ( b  =  dom  O  -> 
( ( N `  dom  O ) : ( dom  O  X.  dom  O ) -1-1-onto-> b  <->  ( N `  dom  O ) : ( dom  O  X.  dom  O ) -1-1-onto-> dom  O ) )
6862, 66, 673bitrd 271 . . . . . . . . . . . 12  |-  ( b  =  dom  O  -> 
( ( N `  b ) : ( b  X.  b ) -1-1-onto-> b  <-> 
( N `  dom  O ) : ( dom 
O  X.  dom  O
)
-1-1-onto-> dom  O ) )
6959, 68imbi12d 312 . . . . . . . . . . 11  |-  ( b  =  dom  O  -> 
( ( om  C_  b  ->  ( N `  b
) : ( b  X.  b ) -1-1-onto-> b )  <-> 
( om  C_  dom  O  ->  ( N `  dom  O ) : ( dom  O  X.  dom  O ) -1-1-onto-> dom  O ) ) )
7069rspcv 3008 . . . . . . . . . 10  |-  ( dom 
O  e.  (har `  ~P A )  ->  ( A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( N `  b ) : ( b  X.  b ) -1-1-onto-> b )  ->  ( om  C_  dom  O  -> 
( N `  dom  O ) : ( dom 
O  X.  dom  O
)
-1-1-onto-> dom  O ) ) )
7138, 40, 58, 70syl3c 59 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  ( N `  dom  O ) : ( dom 
O  X.  dom  O
)
-1-1-onto-> dom  O )
72 f1oco 5657 . . . . . . . . 9  |-  ( ( O : dom  O -1-1-onto-> t  /\  ( N `  dom  O ) : ( dom 
O  X.  dom  O
)
-1-1-onto-> dom  O )  ->  ( O  o.  ( N `  dom  O ) ) : ( dom  O  X.  dom  O ) -1-1-onto-> t )
7312, 71, 72syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  ( O  o.  ( N `  dom  O ) ) : ( dom 
O  X.  dom  O
)
-1-1-onto-> t )
74 f1of 5633 . . . . . . . . . . . . . . 15  |-  ( O : dom  O -1-1-onto-> t  ->  O : dom  O --> t )
7512, 74syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  O : dom  O --> t )
7675feqmptd 5738 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  O  =  ( u  e.  dom  O  |->  ( O `  u ) ) )
77 f1oeq1 5624 . . . . . . . . . . . . 13  |-  ( O  =  ( u  e. 
dom  O  |->  ( O `
 u ) )  ->  ( O : dom  O -1-1-onto-> t  <->  ( u  e. 
dom  O  |->  ( O `
 u ) ) : dom  O -1-1-onto-> t ) )
7876, 77syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( O : dom  O -1-1-onto-> t  <-> 
( u  e.  dom  O 
|->  ( O `  u
) ) : dom  O -1-1-onto-> t ) )
7912, 78mpbid 202 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  ( u  e.  dom  O 
|->  ( O `  u
) ) : dom  O -1-1-onto-> t )
8075feqmptd 5738 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  O  =  ( v  e.  dom  O  |->  ( O `  v ) ) )
81 f1oeq1 5624 . . . . . . . . . . . . 13  |-  ( O  =  ( v  e. 
dom  O  |->  ( O `
 v ) )  ->  ( O : dom  O -1-1-onto-> t  <->  ( v  e. 
dom  O  |->  ( O `
 v ) ) : dom  O -1-1-onto-> t ) )
8280, 81syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( O : dom  O -1-1-onto-> t  <-> 
( v  e.  dom  O 
|->  ( O `  v
) ) : dom  O -1-1-onto-> t ) )
8312, 82mpbid 202 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  ( v  e.  dom  O 
|->  ( O `  v
) ) : dom  O -1-1-onto-> t )
8479, 83xpf1o 7228 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  ( u  e.  dom  O ,  v  e.  dom  O 
|->  <. ( O `  u ) ,  ( O `  v )
>. ) : ( dom 
O  X.  dom  O
)
-1-1-onto-> ( t  X.  t
) )
85 pwfseqlem5.t . . . . . . . . . . 11  |-  T  =  ( u  e.  dom  O ,  v  e.  dom  O 
|->  <. ( O `  u ) ,  ( O `  v )
>. )
86 f1oeq1 5624 . . . . . . . . . . 11  |-  ( T  =  ( u  e. 
dom  O ,  v  e.  dom  O  |->  <.
( O `  u
) ,  ( O `
 v ) >.
)  ->  ( T : ( dom  O  X.  dom  O ) -1-1-onto-> ( t  X.  t )  <->  ( u  e.  dom  O ,  v  e.  dom  O  |->  <.
( O `  u
) ,  ( O `
 v ) >.
) : ( dom 
O  X.  dom  O
)
-1-1-onto-> ( t  X.  t
) ) )
8785, 86ax-mp 8 . . . . . . . . . 10  |-  ( T : ( dom  O  X.  dom  O ) -1-1-onto-> ( t  X.  t )  <->  ( u  e.  dom  O ,  v  e.  dom  O  |->  <.
( O `  u
) ,  ( O `
 v ) >.
) : ( dom 
O  X.  dom  O
)
-1-1-onto-> ( t  X.  t
) )
8884, 87sylibr 204 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  T : ( dom 
O  X.  dom  O
)
-1-1-onto-> ( t  X.  t
) )
89 f1ocnv 5646 . . . . . . . . 9  |-  ( T : ( dom  O  X.  dom  O ) -1-1-onto-> ( t  X.  t )  ->  `' T : ( t  X.  t ) -1-1-onto-> ( dom 
O  X.  dom  O
) )
9088, 89syl 16 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  `' T : ( t  X.  t ) -1-1-onto-> ( dom 
O  X.  dom  O
) )
91 f1oco 5657 . . . . . . . 8  |-  ( ( ( O  o.  ( N `  dom  O ) ) : ( dom 
O  X.  dom  O
)
-1-1-onto-> t  /\  `' T :
( t  X.  t
)
-1-1-onto-> ( dom  O  X.  dom  O ) )  ->  (
( O  o.  ( N `  dom  O ) )  o.  `' T
) : ( t  X.  t ) -1-1-onto-> t )
9273, 90, 91syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  ( ( O  o.  ( N `  dom  O
) )  o.  `' T ) : ( t  X.  t ) -1-1-onto-> t )
93 pwfseqlem5.p . . . . . . . 8  |-  P  =  ( ( O  o.  ( N `  dom  O
) )  o.  `' T )
94 f1oeq1 5624 . . . . . . . 8  |-  ( P  =  ( ( O  o.  ( N `  dom  O ) )  o.  `' T )  ->  ( P : ( t  X.  t ) -1-1-onto-> t  <->  ( ( O  o.  ( N `  dom  O ) )  o.  `' T ) : ( t  X.  t ) -1-1-onto-> t ) )
9593, 94ax-mp 8 . . . . . . 7  |-  ( P : ( t  X.  t ) -1-1-onto-> t  <->  ( ( O  o.  ( N `  dom  O ) )  o.  `' T ) : ( t  X.  t ) -1-1-onto-> t )
9692, 95sylibr 204 . . . . . 6  |-  ( (
ph  /\  ps )  ->  P : ( t  X.  t ) -1-1-onto-> t )
97 f1of1 5632 . . . . . 6  |-  ( P : ( t  X.  t ) -1-1-onto-> t  ->  P :
( t  X.  t
) -1-1-> t )
9896, 97syl 16 . . . . 5  |-  ( (
ph  /\  ps )  ->  P : ( t  X.  t ) -1-1-> t )
99 f1of1 5632 . . . . . . . . . . . . 13  |-  ( O : dom  O -1-1-onto-> t  ->  O : dom  O -1-1-> t )
10012, 99syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  O : dom  O -1-1-> t )
101 f1ssres 5605 . . . . . . . . . . . 12  |-  ( ( O : dom  O -1-1-> t  /\  om  C_  dom  O )  ->  ( O  |` 
om ) : om -1-1-> t )
102100, 58, 101syl2anc 643 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  ( O  |`  om ) : om -1-1-> t )
103 f1f1orn 5644 . . . . . . . . . . 11  |-  ( ( O  |`  om ) : om -1-1-> t  ->  ( O  |`  om ) : om -1-1-onto-> ran  ( O  |`  om ) )
104102, 103syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  ( O  |`  om ) : om -1-1-onto-> ran  ( O  |`  om ) )
10575, 58feqresmpt 5739 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  ( O  |`  om )  =  ( x  e. 
om  |->  ( O `  x ) ) )
106 f1oeq1 5624 . . . . . . . . . . 11  |-  ( ( O  |`  om )  =  ( x  e. 
om  |->  ( O `  x ) )  -> 
( ( O  |`  om ) : om -1-1-onto-> ran  ( O  |`  om )  <->  ( x  e. 
om  |->  ( O `  x ) ) : om -1-1-onto-> ran  ( O  |`  om ) ) )
107105, 106syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  ( ( O  |`  om ) : om -1-1-onto-> ran  ( O  |`  om )  <->  ( x  e. 
om  |->  ( O `  x ) ) : om -1-1-onto-> ran  ( O  |`  om ) ) )
108104, 107mpbid 202 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  ( x  e.  om  |->  ( O `  x ) ) : om -1-1-onto-> ran  ( O  |`  om ) )
109 mptresid 5154 . . . . . . . . . 10  |-  ( y  e.  t  |->  y )  =  (  _I  |`  t
)
110 f1oi 5672 . . . . . . . . . . 11  |-  (  _I  |`  t ) : t -1-1-onto-> t
111 f1oeq1 5624 . . . . . . . . . . 11  |-  ( ( y  e.  t  |->  y )  =  (  _I  |`  t )  ->  (
( y  e.  t 
|->  y ) : t -1-1-onto-> t  <-> 
(  _I  |`  t
) : t -1-1-onto-> t ) )
112110, 111mpbiri 225 . . . . . . . . . 10  |-  ( ( y  e.  t  |->  y )  =  (  _I  |`  t )  ->  (
y  e.  t  |->  y ) : t -1-1-onto-> t )
113109, 112mp1i 12 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  ( y  e.  t 
|->  y ) : t -1-1-onto-> t )
114108, 113xpf1o 7228 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  ( x  e.  om ,  y  e.  t  |-> 
<. ( O `  x
) ,  y >.
) : ( om 
X.  t ) -1-1-onto-> ( ran  ( O  |`  om )  X.  t ) )
115 pwfseqlem5.i . . . . . . . . 9  |-  I  =  ( x  e.  om ,  y  e.  t  |-> 
<. ( O `  x
) ,  y >.
)
116 f1oeq1 5624 . . . . . . . . 9  |-  ( I  =  ( x  e. 
om ,  y  e.  t  |->  <. ( O `  x ) ,  y
>. )  ->  ( I : ( om  X.  t ) -1-1-onto-> ( ran  ( O  |`  om )  X.  t
)  <->  ( x  e. 
om ,  y  e.  t  |->  <. ( O `  x ) ,  y
>. ) : ( om 
X.  t ) -1-1-onto-> ( ran  ( O  |`  om )  X.  t ) ) )
117115, 116ax-mp 8 . . . . . . . 8  |-  ( I : ( om  X.  t ) -1-1-onto-> ( ran  ( O  |`  om )  X.  t
)  <->  ( x  e. 
om ,  y  e.  t  |->  <. ( O `  x ) ,  y
>. ) : ( om 
X.  t ) -1-1-onto-> ( ran  ( O  |`  om )  X.  t ) )
118114, 117sylibr 204 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  I : ( om 
X.  t ) -1-1-onto-> ( ran  ( O  |`  om )  X.  t ) )
119 f1of1 5632 . . . . . . 7  |-  ( I : ( om  X.  t ) -1-1-onto-> ( ran  ( O  |`  om )  X.  t
)  ->  I :
( om  X.  t
) -1-1-> ( ran  ( O  |`  om )  X.  t ) )
120118, 119syl 16 . . . . . 6  |-  ( (
ph  /\  ps )  ->  I : ( om 
X.  t ) -1-1-> ( ran  ( O  |`  om )  X.  t
) )
121 f1f 5598 . . . . . . . 8  |-  ( ( O  |`  om ) : om -1-1-> t  ->  ( O  |`  om ) : om --> t )
122 frn 5556 . . . . . . . 8  |-  ( ( O  |`  om ) : om --> t  ->  ran  ( O  |`  om )  C_  t )
123102, 121, 1223syl 19 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  ran  ( O  |`  om )  C_  t )
124 xpss1 4943 . . . . . . 7  |-  ( ran  ( O  |`  om )  C_  t  ->  ( ran  ( O  |`  om )  X.  t )  C_  (
t  X.  t ) )
125123, 124syl 16 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( ran  ( O  |`  om )  X.  t
)  C_  ( t  X.  t ) )
126 f1ss 5603 . . . . . 6  |-  ( ( I : ( om 
X.  t ) -1-1-> ( ran  ( O  |`  om )  X.  t
)  /\  ( ran  ( O  |`  om )  X.  t )  C_  (
t  X.  t ) )  ->  I :
( om  X.  t
) -1-1-> ( t  X.  t ) )
127120, 125, 126syl2anc 643 . . . . 5  |-  ( (
ph  /\  ps )  ->  I : ( om 
X.  t ) -1-1-> ( t  X.  t ) )
128 f1co 5607 . . . . 5  |-  ( ( P : ( t  X.  t ) -1-1-> t  /\  I : ( om  X.  t )
-1-1-> ( t  X.  t
) )  ->  ( P  o.  I ) : ( om  X.  t ) -1-1-> t )
12998, 127, 128syl2anc 643 . . . 4  |-  ( (
ph  /\  ps )  ->  ( P  o.  I
) : ( om 
X.  t ) -1-1-> t )
1305a1i 11 . . . . 5  |-  ( (
ph  /\  ps )  ->  t  e.  _V )
131 peano1 4823 . . . . . . . 8  |-  (/)  e.  om
132131a1i 11 . . . . . . 7  |-  ( (
ph  /\  ps )  -> 
(/)  e.  om )
13358, 132sseldd 3309 . . . . . 6  |-  ( (
ph  /\  ps )  -> 
(/)  e.  dom  O )
13475, 133ffvelrnd 5830 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( O `  (/) )  e.  t )
135 pwfseqlem5.s . . . . 5  |-  S  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  ( x  e.  (
t  ^m  suc  k ) 
|->  ( ( f `  ( x  |`  k ) ) P ( x `
 k ) ) ) ) ,  { <.
(/) ,  ( O `  (/) ) >. } )
136 pwfseqlem5.q . . . . 5  |-  Q  =  ( y  e.  U_ n  e.  om  (
t  ^m  n )  |-> 
<. dom  y ,  ( ( S `  dom  y ) `  y
) >. )
137130, 134, 96, 135, 136fseqenlem2 7862 . . . 4  |-  ( (
ph  /\  ps )  ->  Q : U_ n  e.  om  ( t  ^m  n ) -1-1-> ( om 
X.  t ) )
138 f1co 5607 . . . 4  |-  ( ( ( P  o.  I
) : ( om 
X.  t ) -1-1-> t  /\  Q : U_ n  e.  om  (
t  ^m  n ) -1-1-> ( om  X.  t
) )  ->  (
( P  o.  I
)  o.  Q ) : U_ n  e. 
om  ( t  ^m  n ) -1-1-> t )
139129, 137, 138syl2anc 643 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( P  o.  I )  o.  Q
) : U_ n  e.  om  ( t  ^m  n ) -1-1-> t )
140 pwfseqlem5.k . . . 4  |-  K  =  ( ( P  o.  I )  o.  Q
)
141 f1eq1 5593 . . . 4  |-  ( K  =  ( ( P  o.  I )  o.  Q )  ->  ( K : U_ n  e. 
om  ( t  ^m  n ) -1-1-> t  <->  ( ( P  o.  I )  o.  Q ) : U_ n  e.  om  (
t  ^m  n ) -1-1-> t ) )
142140, 141ax-mp 8 . . 3  |-  ( K : U_ n  e. 
om  ( t  ^m  n ) -1-1-> t  <->  ( ( P  o.  I )  o.  Q ) : U_ n  e.  om  (
t  ^m  n ) -1-1-> t )
143139, 142sylibr 204 . 2  |-  ( (
ph  /\  ps )  ->  K : U_ n  e.  om  ( t  ^m  n ) -1-1-> t )
144 eqid 2404 . 2  |-  ( G `
 { i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } )  =  ( G `  { i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } )
145 eqid 2404 . 2  |-  ( t  e.  _V ,  r  e.  _V  |->  if ( t  e.  Fin , 
( H `  ( card `  t ) ) ,  ( ( G `
 { i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 |^| { z  e. 
om  |  -.  (
( G `  {
i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 z )  e.  t } ) ) )  =  ( t  e.  _V ,  r  e.  _V  |->  if ( t  e.  Fin , 
( H `  ( card `  t ) ) ,  ( ( G `
 { i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 |^| { z  e. 
om  |  -.  (
( G `  {
i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 z )  e.  t } ) ) )
146 eqid 2404 . . 3  |-  { <. c ,  d >.  |  ( ( c  C_  A  /\  d  C_  ( c  X.  c ) )  /\  ( d  We  c  /\  A. m  e.  c  [. ( `' d " { m } )  /  j ]. ( j ( t  e.  _V ,  r  e.  _V  |->  if ( t  e.  Fin , 
( H `  ( card `  t ) ) ,  ( ( G `
 { i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 |^| { z  e. 
om  |  -.  (
( G `  {
i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 z )  e.  t } ) ) ) ( d  i^i  ( j  X.  j
) ) )  =  m ) ) }  =  { <. c ,  d >.  |  ( ( c  C_  A  /\  d  C_  ( c  X.  c ) )  /\  ( d  We  c  /\  A. m  e.  c  [. ( `' d " { m } )  /  j ]. ( j ( t  e.  _V ,  r  e.  _V  |->  if ( t  e.  Fin , 
( H `  ( card `  t ) ) ,  ( ( G `
 { i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 |^| { z  e. 
om  |  -.  (
( G `  {
i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 z )  e.  t } ) ) ) ( d  i^i  ( j  X.  j
) ) )  =  m ) ) }
147146fpwwe2cbv 8461 . 2  |-  { <. c ,  d >.  |  ( ( c  C_  A  /\  d  C_  ( c  X.  c ) )  /\  ( d  We  c  /\  A. m  e.  c  [. ( `' d " { m } )  /  j ]. ( j ( t  e.  _V ,  r  e.  _V  |->  if ( t  e.  Fin , 
( H `  ( card `  t ) ) ,  ( ( G `
 { i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 |^| { z  e. 
om  |  -.  (
( G `  {
i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 z )  e.  t } ) ) ) ( d  i^i  ( j  X.  j
) ) )  =  m ) ) }  =  { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. b  e.  a  [. ( `' s " { b } )  /  w ]. ( w ( t  e.  _V ,  r  e.  _V  |->  if ( t  e.  Fin , 
( H `  ( card `  t ) ) ,  ( ( G `
 { i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 |^| { z  e. 
om  |  -.  (
( G `  {
i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 z )  e.  t } ) ) ) ( s  i^i  ( w  X.  w
) ) )  =  b ) ) }
148 eqid 2404 . 2  |-  U. dom  {
<. c ,  d >.  |  ( ( c 
C_  A  /\  d  C_  ( c  X.  c
) )  /\  (
d  We  c  /\  A. m  e.  c  [. ( `' d " {
m } )  / 
j ]. ( j ( t  e.  _V , 
r  e.  _V  |->  if ( t  e.  Fin ,  ( H `  ( card `  t ) ) ,  ( ( G `
 { i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 |^| { z  e. 
om  |  -.  (
( G `  {
i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 z )  e.  t } ) ) ) ( d  i^i  ( j  X.  j
) ) )  =  m ) ) }  =  U. dom  { <. c ,  d >.  |  ( ( c 
C_  A  /\  d  C_  ( c  X.  c
) )  /\  (
d  We  c  /\  A. m  e.  c  [. ( `' d " {
m } )  / 
j ]. ( j ( t  e.  _V , 
r  e.  _V  |->  if ( t  e.  Fin ,  ( H `  ( card `  t ) ) ,  ( ( G `
 { i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 |^| { z  e. 
om  |  -.  (
( G `  {
i  e.  t  |  ( ( `' K `  i )  e.  ran  G  /\  -.  i  e.  ( `' G `  ( `' K `  i ) ) ) } ) `
 z )  e.  t } ) ) ) ( d  i^i  ( j  X.  j
) ) )  =  m ) ) }
1491, 2, 3, 4, 143, 144, 145, 147, 148pwfseqlem4 8493 1  |-  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   {crab 2670   _Vcvv 2916   [.wsbc 3121    i^i cin 3279    C_ wss 3280   (/)c0 3588   ifcif 3699   ~Pcpw 3759   {csn 3774   <.cop 3777   U.cuni 3975   |^|cint 4010   U_ciun 4053   class class class wbr 4172   {copab 4225    e. cmpt 4226    _E cep 4452    _I cid 4453    We wwe 4500   Oncon0 4541   suc csuc 4543   omcom 4804    X. cxp 4835   `'ccnv 4836   dom cdm 4837   ran crn 4838    |` cres 4839   "cima 4840    o. ccom 4841   -->wf 5409   -1-1->wf1 5410   -1-1-onto->wf1o 5412   ` cfv 5413    Isom wiso 5414  (class class class)co 6040    e. cmpt2 6042  seq𝜔cseqom 6663    ^m cmap 6977    ~~ cen 7065    ~<_ cdom 7066    ~< csdm 7067   Fincfn 7068  OrdIsocoi 7434  harchar 7480   cardccrd 7778
This theorem is referenced by:  pwfseq  8495
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-seqom 6664  df-1o 6683  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-oi 7435  df-har 7482  df-card 7782
  Copyright terms: Public domain W3C validator