MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem4a Structured version   Unicode version

Theorem pwfseqlem4a 8827
Description: Lemma for pwfseqlem4 8828. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pwfseqlem4.g  |-  ( ph  ->  G : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
pwfseqlem4.x  |-  ( ph  ->  X  C_  A )
pwfseqlem4.h  |-  ( ph  ->  H : om -1-1-onto-> X )
pwfseqlem4.ps  |-  ( ps  <->  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  /\  om  ~<_  x ) )
pwfseqlem4.k  |-  ( (
ph  /\  ps )  ->  K : U_ n  e.  om  ( x  ^m  n ) -1-1-> x )
pwfseqlem4.d  |-  D  =  ( G `  {
w  e.  x  |  ( ( `' K `  w )  e.  ran  G  /\  -.  w  e.  ( `' G `  ( `' K `  w ) ) ) } )
pwfseqlem4.f  |-  F  =  ( x  e.  _V ,  r  e.  _V  |->  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) ) )
Assertion
Ref Expression
pwfseqlem4a  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
( a F s )  e.  A )
Distinct variable groups:    n, r, w, x, z    D, n, z    s, a, F   
w, G    w, K    r, a, x, z, H, s    n, a, ph, s, r, x, z    ps, n, z    A, a, n, r, s, x, z
Allowed substitution hints:    ph( w)    ps( x, w, s, r, a)    A( w)    D( x, w, s, r, a)    F( x, z, w, n, r)    G( x, z, n, s, r, a)    H( w, n)    K( x, z, n, s, r, a)    X( x, z, w, n, s, r, a)

Proof of Theorem pwfseqlem4a
StepHypRef Expression
1 isfinite 7857 . . 3  |-  ( a  e.  Fin  <->  a  ~<  om )
2 simpr 461 . . . . . . 7  |-  ( (
ph  /\  a  e.  Fin )  ->  a  e. 
Fin )
3 vex 2974 . . . . . . 7  |-  s  e. 
_V
4 pwfseqlem4.g . . . . . . . 8  |-  ( ph  ->  G : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
5 pwfseqlem4.x . . . . . . . 8  |-  ( ph  ->  X  C_  A )
6 pwfseqlem4.h . . . . . . . 8  |-  ( ph  ->  H : om -1-1-onto-> X )
7 pwfseqlem4.ps . . . . . . . 8  |-  ( ps  <->  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  /\  om  ~<_  x ) )
8 pwfseqlem4.k . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  K : U_ n  e.  om  ( x  ^m  n ) -1-1-> x )
9 pwfseqlem4.d . . . . . . . 8  |-  D  =  ( G `  {
w  e.  x  |  ( ( `' K `  w )  e.  ran  G  /\  -.  w  e.  ( `' G `  ( `' K `  w ) ) ) } )
10 pwfseqlem4.f . . . . . . . 8  |-  F  =  ( x  e.  _V ,  r  e.  _V  |->  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) ) )
114, 5, 6, 7, 8, 9, 10pwfseqlem2 8825 . . . . . . 7  |-  ( ( a  e.  Fin  /\  s  e.  _V )  ->  ( a F s )  =  ( H `
 ( card `  a
) ) )
122, 3, 11sylancl 662 . . . . . 6  |-  ( (
ph  /\  a  e.  Fin )  ->  ( a F s )  =  ( H `  ( card `  a ) ) )
13 f1of 5640 . . . . . . . . 9  |-  ( H : om -1-1-onto-> X  ->  H : om
--> X )
146, 13syl 16 . . . . . . . 8  |-  ( ph  ->  H : om --> X )
15 fss 5566 . . . . . . . 8  |-  ( ( H : om --> X  /\  X  C_  A )  ->  H : om --> A )
1614, 5, 15syl2anc 661 . . . . . . 7  |-  ( ph  ->  H : om --> A )
17 ficardom 8130 . . . . . . 7  |-  ( a  e.  Fin  ->  ( card `  a )  e. 
om )
18 ffvelrn 5840 . . . . . . 7  |-  ( ( H : om --> A  /\  ( card `  a )  e.  om )  ->  ( H `  ( card `  a ) )  e.  A )
1916, 17, 18syl2an 477 . . . . . 6  |-  ( (
ph  /\  a  e.  Fin )  ->  ( H `
 ( card `  a
) )  e.  A
)
2012, 19eqeltrd 2516 . . . . 5  |-  ( (
ph  /\  a  e.  Fin )  ->  ( a F s )  e.  A )
2120ex 434 . . . 4  |-  ( ph  ->  ( a  e.  Fin  ->  ( a F s )  e.  A ) )
2221adantr 465 . . 3  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
( a  e.  Fin  ->  ( a F s )  e.  A ) )
231, 22syl5bir 218 . 2  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
( a  ~<  om  ->  ( a F s )  e.  A ) )
24 omelon 7851 . . . . 5  |-  om  e.  On
25 onenon 8118 . . . . 5  |-  ( om  e.  On  ->  om  e.  dom  card )
2624, 25ax-mp 5 . . . 4  |-  om  e.  dom  card
27 simpr3 996 . . . . . 6  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
s  We  a )
28 19.8a 1793 . . . . . 6  |-  ( s  We  a  ->  E. s 
s  We  a )
2927, 28syl 16 . . . . 5  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  ->  E. s  s  We  a )
30 ween 8204 . . . . 5  |-  ( a  e.  dom  card  <->  E. s 
s  We  a )
3129, 30sylibr 212 . . . 4  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
a  e.  dom  card )
32 domtri2 8158 . . . 4  |-  ( ( om  e.  dom  card  /\  a  e.  dom  card )  ->  ( om  ~<_  a  <->  -.  a  ~<  om ) )
3326, 31, 32sylancr 663 . . 3  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
( om  ~<_  a  <->  -.  a  ~<  om ) )
34 nfv 1673 . . . . . . 7  |-  F/ r ( ph  /\  (
( a  C_  A  /\  s  C_  ( a  X.  a )  /\  s  We  a )  /\  om  ~<_  a ) )
35 nfcv 2578 . . . . . . . . 9  |-  F/_ r
a
36 nfmpt22 6153 . . . . . . . . . 10  |-  F/_ r
( x  e.  _V ,  r  e.  _V  |->  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) ) )
3710, 36nfcxfr 2575 . . . . . . . . 9  |-  F/_ r F
38 nfcv 2578 . . . . . . . . 9  |-  F/_ r
s
3935, 37, 38nfov 6113 . . . . . . . 8  |-  F/_ r
( a F s )
4039nfel1 2588 . . . . . . 7  |-  F/ r ( a F s )  e.  ( A 
\  a )
4134, 40nfim 1853 . . . . . 6  |-  F/ r ( ( ph  /\  ( ( a  C_  A  /\  s  C_  (
a  X.  a )  /\  s  We  a
)  /\  om  ~<_  a ) )  ->  ( a F s )  e.  ( A  \  a
) )
42 sseq1 3376 . . . . . . . . . 10  |-  ( r  =  s  ->  (
r  C_  ( a  X.  a )  <->  s  C_  ( a  X.  a
) ) )
43 weeq1 4707 . . . . . . . . . 10  |-  ( r  =  s  ->  (
r  We  a  <->  s  We  a ) )
4442, 433anbi23d 1292 . . . . . . . . 9  |-  ( r  =  s  ->  (
( a  C_  A  /\  r  C_  ( a  X.  a )  /\  r  We  a )  <->  ( a  C_  A  /\  s  C_  ( a  X.  a )  /\  s  We  a ) ) )
4544anbi1d 704 . . . . . . . 8  |-  ( r  =  s  ->  (
( ( a  C_  A  /\  r  C_  (
a  X.  a )  /\  r  We  a
)  /\  om  ~<_  a )  <-> 
( ( a  C_  A  /\  s  C_  (
a  X.  a )  /\  s  We  a
)  /\  om  ~<_  a ) ) )
4645anbi2d 703 . . . . . . 7  |-  ( r  =  s  ->  (
( ph  /\  (
( a  C_  A  /\  r  C_  ( a  X.  a )  /\  r  We  a )  /\  om  ~<_  a ) )  <-> 
( ph  /\  (
( a  C_  A  /\  s  C_  ( a  X.  a )  /\  s  We  a )  /\  om  ~<_  a ) ) ) )
47 oveq2 6098 . . . . . . . 8  |-  ( r  =  s  ->  (
a F r )  =  ( a F s ) )
4847eleq1d 2508 . . . . . . 7  |-  ( r  =  s  ->  (
( a F r )  e.  ( A 
\  a )  <->  ( a F s )  e.  ( A  \  a
) ) )
4946, 48imbi12d 320 . . . . . 6  |-  ( r  =  s  ->  (
( ( ph  /\  ( ( a  C_  A  /\  r  C_  (
a  X.  a )  /\  r  We  a
)  /\  om  ~<_  a ) )  ->  ( a F r )  e.  ( A  \  a
) )  <->  ( ( ph  /\  ( ( a 
C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a )  /\  om  ~<_  a ) )  -> 
( a F s )  e.  ( A 
\  a ) ) ) )
50 nfv 1673 . . . . . . . 8  |-  F/ x
( ph  /\  (
( a  C_  A  /\  r  C_  ( a  X.  a )  /\  r  We  a )  /\  om  ~<_  a ) )
51 nfcv 2578 . . . . . . . . . 10  |-  F/_ x
a
52 nfmpt21 6152 . . . . . . . . . . 11  |-  F/_ x
( x  e.  _V ,  r  e.  _V  |->  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) ) )
5310, 52nfcxfr 2575 . . . . . . . . . 10  |-  F/_ x F
54 nfcv 2578 . . . . . . . . . 10  |-  F/_ x
r
5551, 53, 54nfov 6113 . . . . . . . . 9  |-  F/_ x
( a F r )
5655nfel1 2588 . . . . . . . 8  |-  F/ x
( a F r )  e.  ( A 
\  a )
5750, 56nfim 1853 . . . . . . 7  |-  F/ x
( ( ph  /\  ( ( a  C_  A  /\  r  C_  (
a  X.  a )  /\  r  We  a
)  /\  om  ~<_  a ) )  ->  ( a F r )  e.  ( A  \  a
) )
58 sseq1 3376 . . . . . . . . . . . 12  |-  ( x  =  a  ->  (
x  C_  A  <->  a  C_  A ) )
59 xpeq12 4858 . . . . . . . . . . . . . 14  |-  ( ( x  =  a  /\  x  =  a )  ->  ( x  X.  x
)  =  ( a  X.  a ) )
6059anidms 645 . . . . . . . . . . . . 13  |-  ( x  =  a  ->  (
x  X.  x )  =  ( a  X.  a ) )
6160sseq2d 3383 . . . . . . . . . . . 12  |-  ( x  =  a  ->  (
r  C_  ( x  X.  x )  <->  r  C_  ( a  X.  a
) ) )
62 weeq2 4708 . . . . . . . . . . . 12  |-  ( x  =  a  ->  (
r  We  x  <->  r  We  a ) )
6358, 61, 623anbi123d 1289 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  <->  ( a  C_  A  /\  r  C_  ( a  X.  a )  /\  r  We  a ) ) )
64 breq2 4295 . . . . . . . . . . 11  |-  ( x  =  a  ->  ( om 
~<_  x  <->  om  ~<_  a ) )
6563, 64anbi12d 710 . . . . . . . . . 10  |-  ( x  =  a  ->  (
( ( x  C_  A  /\  r  C_  (
x  X.  x )  /\  r  We  x
)  /\  om  ~<_  x )  <-> 
( ( a  C_  A  /\  r  C_  (
a  X.  a )  /\  r  We  a
)  /\  om  ~<_  a ) ) )
667, 65syl5bb 257 . . . . . . . . 9  |-  ( x  =  a  ->  ( ps 
<->  ( ( a  C_  A  /\  r  C_  (
a  X.  a )  /\  r  We  a
)  /\  om  ~<_  a ) ) )
6766anbi2d 703 . . . . . . . 8  |-  ( x  =  a  ->  (
( ph  /\  ps )  <->  (
ph  /\  ( (
a  C_  A  /\  r  C_  ( a  X.  a )  /\  r  We  a )  /\  om  ~<_  a ) ) ) )
68 oveq1 6097 . . . . . . . . 9  |-  ( x  =  a  ->  (
x F r )  =  ( a F r ) )
69 difeq2 3467 . . . . . . . . 9  |-  ( x  =  a  ->  ( A  \  x )  =  ( A  \  a
) )
7068, 69eleq12d 2510 . . . . . . . 8  |-  ( x  =  a  ->  (
( x F r )  e.  ( A 
\  x )  <->  ( a F r )  e.  ( A  \  a
) ) )
7167, 70imbi12d 320 . . . . . . 7  |-  ( x  =  a  ->  (
( ( ph  /\  ps )  ->  ( x F r )  e.  ( A  \  x
) )  <->  ( ( ph  /\  ( ( a 
C_  A  /\  r  C_  ( a  X.  a
)  /\  r  We  a )  /\  om  ~<_  a ) )  -> 
( a F r )  e.  ( A 
\  a ) ) ) )
724, 5, 6, 7, 8, 9, 10pwfseqlem3 8826 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  ( x F r )  e.  ( A 
\  x ) )
7357, 71, 72chvar 1957 . . . . . 6  |-  ( (
ph  /\  ( (
a  C_  A  /\  r  C_  ( a  X.  a )  /\  r  We  a )  /\  om  ~<_  a ) )  -> 
( a F r )  e.  ( A 
\  a ) )
7441, 49, 73chvar 1957 . . . . 5  |-  ( (
ph  /\  ( (
a  C_  A  /\  s  C_  ( a  X.  a )  /\  s  We  a )  /\  om  ~<_  a ) )  -> 
( a F s )  e.  ( A 
\  a ) )
7574eldifad 3339 . . . 4  |-  ( (
ph  /\  ( (
a  C_  A  /\  s  C_  ( a  X.  a )  /\  s  We  a )  /\  om  ~<_  a ) )  -> 
( a F s )  e.  A )
7675expr 615 . . 3  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
( om  ~<_  a  -> 
( a F s )  e.  A ) )
7733, 76sylbird 235 . 2  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
( -.  a  ~<  om  ->  ( a F s )  e.  A
) )
7823, 77pm2.61d 158 1  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
( a F s )  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756   {crab 2718   _Vcvv 2971    \ cdif 3324    C_ wss 3327   ifcif 3790   ~Pcpw 3859   |^|cint 4127   U_ciun 4170   class class class wbr 4291    We wwe 4677   Oncon0 4718    X. cxp 4837   `'ccnv 4838   dom cdm 4839   ran crn 4840   -->wf 5413   -1-1->wf1 5414   -1-1-onto->wf1o 5416   ` cfv 5417  (class class class)co 6090    e. cmpt2 6092   omcom 6475    ^m cmap 7213    ~<_ cdom 7307    ~< csdm 7308   Fincfn 7309   cardccrd 8104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-inf2 7846
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-int 4128  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-se 4679  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6831  df-rdg 6865  df-er 7100  df-map 7215  df-en 7310  df-dom 7311  df-sdom 7312  df-fin 7313  df-card 8108
This theorem is referenced by:  pwfseqlem4  8828
  Copyright terms: Public domain W3C validator