Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwfi2f1o Structured version   Unicode version

Theorem pwfi2f1o 31248
Description: The pw2f1o 7641 bijection relates finitely supported indicator functions on a two-element set to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.)
Hypotheses
Ref Expression
pwfi2f1o.s  |-  S  =  { y  e.  ( 2o  ^m  A )  |  ( `' y
" ( _V  \  { (/) } ) )  e.  Fin }
pwfi2f1o.f  |-  F  =  ( x  e.  S  |->  ( `' x " { 1o } ) )
Assertion
Ref Expression
pwfi2f1o  |-  ( A  e.  V  ->  F : S -1-1-onto-> ( ~P A  i^i  Fin ) )
Distinct variable groups:    x, y, A    x, S    x, V, y
Allowed substitution hints:    S( y)    F( x, y)

Proof of Theorem pwfi2f1o
StepHypRef Expression
1 eqid 2457 . . . . 5  |-  ( x  e.  ( 2o  ^m  A )  |->  ( `' x " { 1o } ) )  =  ( x  e.  ( 2o  ^m  A ) 
|->  ( `' x " { 1o } ) )
21pw2f1o2 31184 . . . 4  |-  ( A  e.  V  ->  (
x  e.  ( 2o 
^m  A )  |->  ( `' x " { 1o } ) ) : ( 2o  ^m  A
)
-1-1-onto-> ~P A )
3 f1of1 5821 . . . 4  |-  ( ( x  e.  ( 2o 
^m  A )  |->  ( `' x " { 1o } ) ) : ( 2o  ^m  A
)
-1-1-onto-> ~P A  ->  ( x  e.  ( 2o  ^m  A )  |->  ( `' x " { 1o } ) ) : ( 2o  ^m  A
) -1-1-> ~P A )
42, 3syl 16 . . 3  |-  ( A  e.  V  ->  (
x  e.  ( 2o 
^m  A )  |->  ( `' x " { 1o } ) ) : ( 2o  ^m  A
) -1-1-> ~P A )
5 pwfi2f1o.s . . . 4  |-  S  =  { y  e.  ( 2o  ^m  A )  |  ( `' y
" ( _V  \  { (/) } ) )  e.  Fin }
6 ssrab2 3581 . . . 4  |-  { y  e.  ( 2o  ^m  A )  |  ( `' y " ( _V  \  { (/) } ) )  e.  Fin }  C_  ( 2o  ^m  A
)
75, 6eqsstri 3529 . . 3  |-  S  C_  ( 2o  ^m  A )
8 f1ores 5836 . . 3  |-  ( ( ( x  e.  ( 2o  ^m  A ) 
|->  ( `' x " { 1o } ) ) : ( 2o  ^m  A ) -1-1-> ~P A  /\  S  C_  ( 2o 
^m  A ) )  ->  ( ( x  e.  ( 2o  ^m  A )  |->  ( `' x " { 1o } ) )  |`  S ) : S -1-1-onto-> (
( x  e.  ( 2o  ^m  A ) 
|->  ( `' x " { 1o } ) )
" S ) )
94, 7, 8sylancl 662 . 2  |-  ( A  e.  V  ->  (
( x  e.  ( 2o  ^m  A ) 
|->  ( `' x " { 1o } ) )  |`  S ) : S -1-1-onto-> (
( x  e.  ( 2o  ^m  A ) 
|->  ( `' x " { 1o } ) )
" S ) )
10 elmapi 7459 . . . . . . . . . . . . . 14  |-  ( y  e.  ( 2o  ^m  A )  ->  y : A --> 2o )
1110adantl 466 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  y  e.  ( 2o  ^m  A ) )  -> 
y : A --> 2o )
12 fsuppeq 31247 . . . . . . . . . . . . 13  |-  ( y : A --> 2o  ->  ( `' y " ( _V  \  { (/) } ) )  =  ( `' y " ( 2o 
\  { (/) } ) ) )
1311, 12syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  y  e.  ( 2o  ^m  A ) )  -> 
( `' y "
( _V  \  { (/)
} ) )  =  ( `' y "
( 2o  \  { (/)
} ) ) )
14 df-2o 7149 . . . . . . . . . . . . . . . 16  |-  2o  =  suc  1o
15 df-suc 4893 . . . . . . . . . . . . . . . . 17  |-  suc  1o  =  ( 1o  u.  { 1o } )
1615equncomi 3646 . . . . . . . . . . . . . . . 16  |-  suc  1o  =  ( { 1o }  u.  1o )
1714, 16eqtri 2486 . . . . . . . . . . . . . . 15  |-  2o  =  ( { 1o }  u.  1o )
18 df1o2 7160 . . . . . . . . . . . . . . . 16  |-  1o  =  { (/) }
1918eqcomi 2470 . . . . . . . . . . . . . . 15  |-  { (/) }  =  1o
2017, 19difeq12i 3616 . . . . . . . . . . . . . 14  |-  ( 2o 
\  { (/) } )  =  ( ( { 1o }  u.  1o )  \  1o )
21 difun2 3910 . . . . . . . . . . . . . . 15  |-  ( ( { 1o }  u.  1o )  \  1o )  =  ( { 1o }  \  1o )
22 incom 3687 . . . . . . . . . . . . . . . . 17  |-  ( { 1o }  i^i  1o )  =  ( 1o  i^i  { 1o } )
23 1on 7155 . . . . . . . . . . . . . . . . . . 19  |-  1o  e.  On
2423onordi 4991 . . . . . . . . . . . . . . . . . 18  |-  Ord  1o
25 orddisj 4925 . . . . . . . . . . . . . . . . . 18  |-  ( Ord 
1o  ->  ( 1o  i^i  { 1o } )  =  (/) )
2624, 25ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( 1o 
i^i  { 1o } )  =  (/)
2722, 26eqtri 2486 . . . . . . . . . . . . . . . 16  |-  ( { 1o }  i^i  1o )  =  (/)
28 disj3 3874 . . . . . . . . . . . . . . . 16  |-  ( ( { 1o }  i^i  1o )  =  (/)  <->  { 1o }  =  ( { 1o }  \  1o ) )
2927, 28mpbi 208 . . . . . . . . . . . . . . 15  |-  { 1o }  =  ( { 1o }  \  1o )
3021, 29eqtr4i 2489 . . . . . . . . . . . . . 14  |-  ( ( { 1o }  u.  1o )  \  1o )  =  { 1o }
3120, 30eqtri 2486 . . . . . . . . . . . . 13  |-  ( 2o 
\  { (/) } )  =  { 1o }
3231imaeq2i 5345 . . . . . . . . . . . 12  |-  ( `' y " ( 2o 
\  { (/) } ) )  =  ( `' y " { 1o } )
3313, 32syl6eq 2514 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  y  e.  ( 2o  ^m  A ) )  -> 
( `' y "
( _V  \  { (/)
} ) )  =  ( `' y " { 1o } ) )
3433eleq1d 2526 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  y  e.  ( 2o  ^m  A ) )  -> 
( ( `' y
" ( _V  \  { (/) } ) )  e.  Fin  <->  ( `' y " { 1o }
)  e.  Fin )
)
35 cnvimass 5367 . . . . . . . . . . . 12  |-  ( `' y " { 1o } )  C_  dom  y
36 fdm 5741 . . . . . . . . . . . . 13  |-  ( y : A --> 2o  ->  dom  y  =  A )
3711, 36syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  y  e.  ( 2o  ^m  A ) )  ->  dom  y  =  A
)
3835, 37syl5sseq 3547 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  y  e.  ( 2o  ^m  A ) )  -> 
( `' y " { 1o } )  C_  A )
3938biantrurd 508 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  y  e.  ( 2o  ^m  A ) )  -> 
( ( `' y
" { 1o }
)  e.  Fin  <->  ( ( `' y " { 1o } )  C_  A  /\  ( `' y " { 1o } )  e. 
Fin ) ) )
4034, 39bitrd 253 . . . . . . . . 9  |-  ( ( A  e.  V  /\  y  e.  ( 2o  ^m  A ) )  -> 
( ( `' y
" ( _V  \  { (/) } ) )  e.  Fin  <->  ( ( `' y " { 1o } )  C_  A  /\  ( `' y " { 1o } )  e. 
Fin ) ) )
41 elfpw 7840 . . . . . . . . 9  |-  ( ( `' y " { 1o } )  e.  ( ~P A  i^i  Fin ) 
<->  ( ( `' y
" { 1o }
)  C_  A  /\  ( `' y " { 1o } )  e.  Fin ) )
4240, 41syl6bbr 263 . . . . . . . 8  |-  ( ( A  e.  V  /\  y  e.  ( 2o  ^m  A ) )  -> 
( ( `' y
" ( _V  \  { (/) } ) )  e.  Fin  <->  ( `' y " { 1o }
)  e.  ( ~P A  i^i  Fin )
) )
4342rabbidva 3100 . . . . . . 7  |-  ( A  e.  V  ->  { y  e.  ( 2o  ^m  A )  |  ( `' y " ( _V  \  { (/) } ) )  e.  Fin }  =  { y  e.  ( 2o  ^m  A )  |  ( `' y
" { 1o }
)  e.  ( ~P A  i^i  Fin ) } )
44 cnveq 5186 . . . . . . . . . 10  |-  ( x  =  y  ->  `' x  =  `' y
)
4544imaeq1d 5346 . . . . . . . . 9  |-  ( x  =  y  ->  ( `' x " { 1o } )  =  ( `' y " { 1o } ) )
4645cbvmptv 4548 . . . . . . . 8  |-  ( x  e.  ( 2o  ^m  A )  |->  ( `' x " { 1o } ) )  =  ( y  e.  ( 2o  ^m  A ) 
|->  ( `' y " { 1o } ) )
4746mptpreima 5506 . . . . . . 7  |-  ( `' ( x  e.  ( 2o  ^m  A ) 
|->  ( `' x " { 1o } ) )
" ( ~P A  i^i  Fin ) )  =  { y  e.  ( 2o  ^m  A )  |  ( `' y
" { 1o }
)  e.  ( ~P A  i^i  Fin ) }
4843, 5, 473eqtr4g 2523 . . . . . 6  |-  ( A  e.  V  ->  S  =  ( `' ( x  e.  ( 2o 
^m  A )  |->  ( `' x " { 1o } ) ) "
( ~P A  i^i  Fin ) ) )
4948imaeq2d 5347 . . . . 5  |-  ( A  e.  V  ->  (
( x  e.  ( 2o  ^m  A ) 
|->  ( `' x " { 1o } ) )
" S )  =  ( ( x  e.  ( 2o  ^m  A
)  |->  ( `' x " { 1o } ) ) " ( `' ( x  e.  ( 2o  ^m  A ) 
|->  ( `' x " { 1o } ) )
" ( ~P A  i^i  Fin ) ) ) )
50 f1ofo 5829 . . . . . . 7  |-  ( ( x  e.  ( 2o 
^m  A )  |->  ( `' x " { 1o } ) ) : ( 2o  ^m  A
)
-1-1-onto-> ~P A  ->  ( x  e.  ( 2o  ^m  A )  |->  ( `' x " { 1o } ) ) : ( 2o  ^m  A
) -onto-> ~P A )
512, 50syl 16 . . . . . 6  |-  ( A  e.  V  ->  (
x  e.  ( 2o 
^m  A )  |->  ( `' x " { 1o } ) ) : ( 2o  ^m  A
) -onto-> ~P A )
52 inss1 3714 . . . . . 6  |-  ( ~P A  i^i  Fin )  C_ 
~P A
53 foimacnv 5839 . . . . . 6  |-  ( ( ( x  e.  ( 2o  ^m  A ) 
|->  ( `' x " { 1o } ) ) : ( 2o  ^m  A ) -onto-> ~P A  /\  ( ~P A  i^i  Fin )  C_  ~P A
)  ->  ( (
x  e.  ( 2o 
^m  A )  |->  ( `' x " { 1o } ) ) "
( `' ( x  e.  ( 2o  ^m  A )  |->  ( `' x " { 1o } ) ) "
( ~P A  i^i  Fin ) ) )  =  ( ~P A  i^i  Fin ) )
5451, 52, 53sylancl 662 . . . . 5  |-  ( A  e.  V  ->  (
( x  e.  ( 2o  ^m  A ) 
|->  ( `' x " { 1o } ) )
" ( `' ( x  e.  ( 2o 
^m  A )  |->  ( `' x " { 1o } ) ) "
( ~P A  i^i  Fin ) ) )  =  ( ~P A  i^i  Fin ) )
5549, 54eqtrd 2498 . . . 4  |-  ( A  e.  V  ->  (
( x  e.  ( 2o  ^m  A ) 
|->  ( `' x " { 1o } ) )
" S )  =  ( ~P A  i^i  Fin ) )
56 f1oeq3 5815 . . . 4  |-  ( ( ( x  e.  ( 2o  ^m  A ) 
|->  ( `' x " { 1o } ) )
" S )  =  ( ~P A  i^i  Fin )  ->  ( (
( x  e.  ( 2o  ^m  A ) 
|->  ( `' x " { 1o } ) )  |`  S ) : S -1-1-onto-> (
( x  e.  ( 2o  ^m  A ) 
|->  ( `' x " { 1o } ) )
" S )  <->  ( (
x  e.  ( 2o 
^m  A )  |->  ( `' x " { 1o } ) )  |`  S ) : S -1-1-onto-> ( ~P A  i^i  Fin )
) )
5755, 56syl 16 . . 3  |-  ( A  e.  V  ->  (
( ( x  e.  ( 2o  ^m  A
)  |->  ( `' x " { 1o } ) )  |`  S ) : S -1-1-onto-> ( ( x  e.  ( 2o  ^m  A
)  |->  ( `' x " { 1o } ) ) " S )  <-> 
( ( x  e.  ( 2o  ^m  A
)  |->  ( `' x " { 1o } ) )  |`  S ) : S -1-1-onto-> ( ~P A  i^i  Fin ) ) )
58 resmpt 5333 . . . . . 6  |-  ( S 
C_  ( 2o  ^m  A )  ->  (
( x  e.  ( 2o  ^m  A ) 
|->  ( `' x " { 1o } ) )  |`  S )  =  ( x  e.  S  |->  ( `' x " { 1o } ) ) )
597, 58ax-mp 5 . . . . 5  |-  ( ( x  e.  ( 2o 
^m  A )  |->  ( `' x " { 1o } ) )  |`  S )  =  ( x  e.  S  |->  ( `' x " { 1o } ) )
60 pwfi2f1o.f . . . . 5  |-  F  =  ( x  e.  S  |->  ( `' x " { 1o } ) )
6159, 60eqtr4i 2489 . . . 4  |-  ( ( x  e.  ( 2o 
^m  A )  |->  ( `' x " { 1o } ) )  |`  S )  =  F
62 f1oeq1 5813 . . . 4  |-  ( ( ( x  e.  ( 2o  ^m  A ) 
|->  ( `' x " { 1o } ) )  |`  S )  =  F  ->  ( ( ( x  e.  ( 2o 
^m  A )  |->  ( `' x " { 1o } ) )  |`  S ) : S -1-1-onto-> ( ~P A  i^i  Fin )  <->  F : S -1-1-onto-> ( ~P A  i^i  Fin ) ) )
6361, 62mp1i 12 . . 3  |-  ( A  e.  V  ->  (
( ( x  e.  ( 2o  ^m  A
)  |->  ( `' x " { 1o } ) )  |`  S ) : S -1-1-onto-> ( ~P A  i^i  Fin )  <->  F : S -1-1-onto-> ( ~P A  i^i  Fin )
) )
6457, 63bitrd 253 . 2  |-  ( A  e.  V  ->  (
( ( x  e.  ( 2o  ^m  A
)  |->  ( `' x " { 1o } ) )  |`  S ) : S -1-1-onto-> ( ( x  e.  ( 2o  ^m  A
)  |->  ( `' x " { 1o } ) ) " S )  <-> 
F : S -1-1-onto-> ( ~P A  i^i  Fin )
) )
659, 64mpbid 210 1  |-  ( A  e.  V  ->  F : S -1-1-onto-> ( ~P A  i^i  Fin ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   {crab 2811   _Vcvv 3109    \ cdif 3468    u. cun 3469    i^i cin 3470    C_ wss 3471   (/)c0 3793   ~Pcpw 4015   {csn 4032    |-> cmpt 4515   Ord word 4886   suc csuc 4889   `'ccnv 5007   dom cdm 5008    |` cres 5010   "cima 5011   -->wf 5590   -1-1->wf1 5591   -onto->wfo 5592   -1-1-onto->wf1o 5593  (class class class)co 6296   1oc1o 7141   2oc2o 7142    ^m cmap 7438   Fincfn 7535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-1o 7148  df-2o 7149  df-map 7440
This theorem is referenced by:  pwfi2en  31249
  Copyright terms: Public domain W3C validator