MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwcdaen Structured version   Unicode version

Theorem pwcdaen 8373
Description: Sum of exponents law for cardinal arithmetic. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
pwcdaen  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ~P ( A  +c  B )  ~~  ( ~P A  X.  ~P B
) )

Proof of Theorem pwcdaen
StepHypRef Expression
1 ovex 6135 . . 3  |-  ( A  +c  B )  e. 
_V
21pw2en 7437 . 2  |-  ~P ( A  +c  B )  ~~  ( 2o  ^m  ( A  +c  B ) )
3 2on 6947 . . . 4  |-  2o  e.  On
4 mapcdaen 8372 . . . 4  |-  ( ( 2o  e.  On  /\  A  e.  V  /\  B  e.  W )  ->  ( 2o  ^m  ( A  +c  B ) ) 
~~  ( ( 2o 
^m  A )  X.  ( 2o  ^m  B
) ) )
53, 4mp3an1 1301 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 2o  ^m  ( A  +c  B ) ) 
~~  ( ( 2o 
^m  A )  X.  ( 2o  ^m  B
) ) )
6 pw2eng 7436 . . . . 5  |-  ( A  e.  V  ->  ~P A  ~~  ( 2o  ^m  A ) )
7 pw2eng 7436 . . . . 5  |-  ( B  e.  W  ->  ~P B  ~~  ( 2o  ^m  B ) )
8 xpen 7493 . . . . 5  |-  ( ( ~P A  ~~  ( 2o  ^m  A )  /\  ~P B  ~~  ( 2o 
^m  B ) )  ->  ( ~P A  X.  ~P B )  ~~  ( ( 2o  ^m  A )  X.  ( 2o  ^m  B ) ) )
96, 7, 8syl2an 477 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ~P A  X.  ~P B )  ~~  (
( 2o  ^m  A
)  X.  ( 2o 
^m  B ) ) )
10 enen2 7471 . . . 4  |-  ( ( ~P A  X.  ~P B )  ~~  (
( 2o  ^m  A
)  X.  ( 2o 
^m  B ) )  ->  ( ( 2o 
^m  ( A  +c  B ) )  ~~  ( ~P A  X.  ~P B )  <->  ( 2o  ^m  ( A  +c  B
) )  ~~  (
( 2o  ^m  A
)  X.  ( 2o 
^m  B ) ) ) )
119, 10syl 16 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( 2o  ^m  ( A  +c  B
) )  ~~  ( ~P A  X.  ~P B
)  <->  ( 2o  ^m  ( A  +c  B
) )  ~~  (
( 2o  ^m  A
)  X.  ( 2o 
^m  B ) ) ) )
125, 11mpbird 232 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 2o  ^m  ( A  +c  B ) ) 
~~  ( ~P A  X.  ~P B ) )
13 entr 7380 . 2  |-  ( ( ~P ( A  +c  B )  ~~  ( 2o  ^m  ( A  +c  B ) )  /\  ( 2o  ^m  ( A  +c  B ) ) 
~~  ( ~P A  X.  ~P B ) )  ->  ~P ( A  +c  B )  ~~  ( ~P A  X.  ~P B ) )
142, 12, 13sylancr 663 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ~P ( A  +c  B )  ~~  ( ~P A  X.  ~P B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1756   ~Pcpw 3879   class class class wbr 4311   Oncon0 4738    X. cxp 4857  (class class class)co 6110   2oc2o 6933    ^m cmap 7233    ~~ cen 7326    +c ccda 8355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2739  df-rex 2740  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-pss 3363  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-tp 3901  df-op 3903  df-uni 4111  df-int 4148  df-iun 4192  df-br 4312  df-opab 4370  df-mpt 4371  df-tr 4405  df-eprel 4651  df-id 4655  df-po 4660  df-so 4661  df-fr 4698  df-we 4700  df-ord 4741  df-on 4742  df-suc 4744  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-f1 5442  df-fo 5443  df-f1o 5444  df-fv 5445  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6596  df-2nd 6597  df-1o 6939  df-2o 6940  df-er 7120  df-map 7235  df-en 7330  df-dom 7331  df-cda 8356
This theorem is referenced by:  pwcda1  8382  pwcdadom  8404  canthp1lem1  8838  gchxpidm  8855  gchhar  8865
  Copyright terms: Public domain W3C validator