MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2f1olem Structured version   Unicode version

Theorem pw2f1olem 7415
Description: Lemma for pw2f1o 7416. (Contributed by Mario Carneiro, 6-Oct-2014.)
Hypotheses
Ref Expression
pw2f1o.1  |-  ( ph  ->  A  e.  V )
pw2f1o.2  |-  ( ph  ->  B  e.  W )
pw2f1o.3  |-  ( ph  ->  C  e.  W )
pw2f1o.4  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
pw2f1olem  |-  ( ph  ->  ( ( S  e. 
~P A  /\  G  =  ( z  e.  A  |->  if ( z  e.  S ,  C ,  B ) ) )  <-> 
( G  e.  ( { B ,  C }  ^m  A )  /\  S  =  ( `' G " { C }
) ) ) )
Distinct variable groups:    z, A    z, B    z, C    z, S
Allowed substitution hints:    ph( z)    G( z)    V( z)    W( z)

Proof of Theorem pw2f1olem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pw2f1o.3 . . . . . . . . . 10  |-  ( ph  ->  C  e.  W )
2 prid2g 3982 . . . . . . . . . 10  |-  ( C  e.  W  ->  C  e.  { B ,  C } )
31, 2syl 16 . . . . . . . . 9  |-  ( ph  ->  C  e.  { B ,  C } )
4 pw2f1o.2 . . . . . . . . . 10  |-  ( ph  ->  B  e.  W )
5 prid1g 3981 . . . . . . . . . 10  |-  ( B  e.  W  ->  B  e.  { B ,  C } )
64, 5syl 16 . . . . . . . . 9  |-  ( ph  ->  B  e.  { B ,  C } )
7 ifcl 3831 . . . . . . . . 9  |-  ( ( C  e.  { B ,  C }  /\  B  e.  { B ,  C } )  ->  if ( y  e.  S ,  C ,  B )  e.  { B ,  C } )
83, 6, 7syl2anc 661 . . . . . . . 8  |-  ( ph  ->  if ( y  e.  S ,  C ,  B )  e.  { B ,  C }
)
98adantr 465 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  if ( y  e.  S ,  C ,  B )  e.  { B ,  C } )
10 eqid 2443 . . . . . . 7  |-  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B )
)  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B )
)
119, 10fmptd 5867 . . . . . 6  |-  ( ph  ->  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) : A --> { B ,  C } )
1211adantr 465 . . . . 5  |-  ( (
ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  ->  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B )
) : A --> { B ,  C } )
13 simprr 756 . . . . . 6  |-  ( (
ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  ->  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) )
1413feq1d 5546 . . . . 5  |-  ( (
ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  ->  ( G : A --> { B ,  C }  <->  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) : A --> { B ,  C } ) )
1512, 14mpbird 232 . . . 4  |-  ( (
ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  ->  G : A
--> { B ,  C } )
16 iftrue 3797 . . . . . . . . 9  |-  ( x  e.  S  ->  if ( x  e.  S ,  C ,  B )  =  C )
17 pw2f1o.4 . . . . . . . . . . . 12  |-  ( ph  ->  B  =/=  C )
1817ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  /\  x  e.  A )  ->  B  =/=  C )
19 iffalse 3799 . . . . . . . . . . . 12  |-  ( -.  x  e.  S  ->  if ( x  e.  S ,  C ,  B )  =  B )
2019neeq1d 2621 . . . . . . . . . . 11  |-  ( -.  x  e.  S  -> 
( if ( x  e.  S ,  C ,  B )  =/=  C  <->  B  =/=  C ) )
2118, 20syl5ibrcom 222 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  /\  x  e.  A )  ->  ( -.  x  e.  S  ->  if ( x  e.  S ,  C ,  B )  =/=  C
) )
2221necon4bd 2673 . . . . . . . . 9  |-  ( ( ( ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  /\  x  e.  A )  ->  ( if ( x  e.  S ,  C ,  B )  =  C  ->  x  e.  S ) )
2316, 22impbid2 204 . . . . . . . 8  |-  ( ( ( ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  /\  x  e.  A )  ->  (
x  e.  S  <->  if (
x  e.  S ,  C ,  B )  =  C ) )
24 simplrr 760 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  /\  x  e.  A )  ->  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) )
2524fveq1d 5693 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  /\  x  e.  A )  ->  ( G `  x )  =  ( ( y  e.  A  |->  if ( y  e.  S ,  C ,  B )
) `  x )
)
26 id 22 . . . . . . . . . . 11  |-  ( x  e.  A  ->  x  e.  A )
27 ifcl 3831 . . . . . . . . . . . . 13  |-  ( ( C  e.  { B ,  C }  /\  B  e.  { B ,  C } )  ->  if ( x  e.  S ,  C ,  B )  e.  { B ,  C } )
283, 6, 27syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  if ( x  e.  S ,  C ,  B )  e.  { B ,  C }
)
2928adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  ->  if (
x  e.  S ,  C ,  B )  e.  { B ,  C } )
30 eleq1 2503 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  (
y  e.  S  <->  x  e.  S ) )
3130ifbid 3811 . . . . . . . . . . . 12  |-  ( y  =  x  ->  if ( y  e.  S ,  C ,  B )  =  if ( x  e.  S ,  C ,  B ) )
3231, 10fvmptg 5772 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  if ( x  e.  S ,  C ,  B )  e.  { B ,  C } )  ->  (
( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) `  x )  =  if ( x  e.  S ,  C ,  B ) )
3326, 29, 32syl2anr 478 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  /\  x  e.  A )  ->  (
( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) `  x )  =  if ( x  e.  S ,  C ,  B ) )
3425, 33eqtrd 2475 . . . . . . . . 9  |-  ( ( ( ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  /\  x  e.  A )  ->  ( G `  x )  =  if ( x  e.  S ,  C ,  B ) )
3534eqeq1d 2451 . . . . . . . 8  |-  ( ( ( ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  /\  x  e.  A )  ->  (
( G `  x
)  =  C  <->  if (
x  e.  S ,  C ,  B )  =  C ) )
3623, 35bitr4d 256 . . . . . . 7  |-  ( ( ( ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  /\  x  e.  A )  ->  (
x  e.  S  <->  ( G `  x )  =  C ) )
3736pm5.32da 641 . . . . . 6  |-  ( (
ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  ->  ( (
x  e.  A  /\  x  e.  S )  <->  ( x  e.  A  /\  ( G `  x )  =  C ) ) )
38 simprl 755 . . . . . . . 8  |-  ( (
ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  ->  S  C_  A
)
3938sseld 3355 . . . . . . 7  |-  ( (
ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  ->  ( x  e.  S  ->  x  e.  A ) )
4039pm4.71rd 635 . . . . . 6  |-  ( (
ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  ->  ( x  e.  S  <->  ( x  e.  A  /\  x  e.  S ) ) )
41 ffn 5559 . . . . . . . 8  |-  ( G : A --> { B ,  C }  ->  G  Fn  A )
4215, 41syl 16 . . . . . . 7  |-  ( (
ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  ->  G  Fn  A )
43 fniniseg 5824 . . . . . . 7  |-  ( G  Fn  A  ->  (
x  e.  ( `' G " { C } )  <->  ( x  e.  A  /\  ( G `  x )  =  C ) ) )
4442, 43syl 16 . . . . . 6  |-  ( (
ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  ->  ( x  e.  ( `' G " { C } )  <->  ( x  e.  A  /\  ( G `  x )  =  C ) ) )
4537, 40, 443bitr4d 285 . . . . 5  |-  ( (
ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  ->  ( x  e.  S  <->  x  e.  ( `' G " { C } ) ) )
4645eqrdv 2441 . . . 4  |-  ( (
ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  ->  S  =  ( `' G " { C } ) )
4715, 46jca 532 . . 3  |-  ( (
ph  /\  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )  ->  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )
48 simprr 756 . . . . 5  |-  ( (
ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  ->  S  =  ( `' G " { C } ) )
49 cnvimass 5189 . . . . . 6  |-  ( `' G " { C } )  C_  dom  G
50 fdm 5563 . . . . . . 7  |-  ( G : A --> { B ,  C }  ->  dom  G  =  A )
5150ad2antrl 727 . . . . . 6  |-  ( (
ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  ->  dom  G  =  A )
5249, 51syl5sseq 3404 . . . . 5  |-  ( (
ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  ->  ( `' G " { C }
)  C_  A )
5348, 52eqsstrd 3390 . . . 4  |-  ( (
ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  ->  S  C_  A
)
5441ad2antrl 727 . . . . . 6  |-  ( (
ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  ->  G  Fn  A )
55 dffn5 5737 . . . . . 6  |-  ( G  Fn  A  <->  G  =  ( y  e.  A  |->  ( G `  y
) ) )
5654, 55sylib 196 . . . . 5  |-  ( (
ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  ->  G  =  ( y  e.  A  |->  ( G `  y
) ) )
57 simplrr 760 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  /\  y  e.  A )  ->  S  =  ( `' G " { C } ) )
5857eleq2d 2510 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  /\  y  e.  A )  ->  (
y  e.  S  <->  y  e.  ( `' G " { C } ) ) )
59 fniniseg 5824 . . . . . . . . . . . 12  |-  ( G  Fn  A  ->  (
y  e.  ( `' G " { C } )  <->  ( y  e.  A  /\  ( G `  y )  =  C ) ) )
6054, 59syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  ->  ( y  e.  ( `' G " { C } )  <->  ( y  e.  A  /\  ( G `  y )  =  C ) ) )
6160baibd 900 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  /\  y  e.  A )  ->  (
y  e.  ( `' G " { C } )  <->  ( G `  y )  =  C ) )
6258, 61bitrd 253 . . . . . . . . 9  |-  ( ( ( ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  /\  y  e.  A )  ->  (
y  e.  S  <->  ( G `  y )  =  C ) )
6362biimpa 484 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  /\  y  e.  A )  /\  y  e.  S )  ->  ( G `  y )  =  C )
64 iftrue 3797 . . . . . . . . 9  |-  ( y  e.  S  ->  if ( y  e.  S ,  C ,  B )  =  C )
6564adantl 466 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  /\  y  e.  A )  /\  y  e.  S )  ->  if ( y  e.  S ,  C ,  B )  =  C )
6663, 65eqtr4d 2478 . . . . . . 7  |-  ( ( ( ( ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  /\  y  e.  A )  /\  y  e.  S )  ->  ( G `  y )  =  if ( y  e.  S ,  C ,  B ) )
67 simprl 755 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  ->  G : A
--> { B ,  C } )
6867ffvelrnda 5843 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  /\  y  e.  A )  ->  ( G `  y )  e.  { B ,  C } )
69 fvex 5701 . . . . . . . . . . . . . 14  |-  ( G `
 y )  e. 
_V
7069elpr 3895 . . . . . . . . . . . . 13  |-  ( ( G `  y )  e.  { B ,  C }  <->  ( ( G `
 y )  =  B  \/  ( G `
 y )  =  C ) )
7168, 70sylib 196 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  /\  y  e.  A )  ->  (
( G `  y
)  =  B  \/  ( G `  y )  =  C ) )
7271ord 377 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  /\  y  e.  A )  ->  ( -.  ( G `  y
)  =  B  -> 
( G `  y
)  =  C ) )
7372, 62sylibrd 234 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  /\  y  e.  A )  ->  ( -.  ( G `  y
)  =  B  -> 
y  e.  S ) )
7473con1d 124 . . . . . . . . 9  |-  ( ( ( ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  /\  y  e.  A )  ->  ( -.  y  e.  S  ->  ( G `  y
)  =  B ) )
7574imp 429 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  /\  y  e.  A )  /\  -.  y  e.  S )  ->  ( G `  y
)  =  B )
76 iffalse 3799 . . . . . . . . 9  |-  ( -.  y  e.  S  ->  if ( y  e.  S ,  C ,  B )  =  B )
7776adantl 466 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  /\  y  e.  A )  /\  -.  y  e.  S )  ->  if ( y  e.  S ,  C ,  B )  =  B )
7875, 77eqtr4d 2478 . . . . . . 7  |-  ( ( ( ( ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  /\  y  e.  A )  /\  -.  y  e.  S )  ->  ( G `  y
)  =  if ( y  e.  S ,  C ,  B )
)
7966, 78pm2.61dan 789 . . . . . 6  |-  ( ( ( ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  /\  y  e.  A )  ->  ( G `  y )  =  if ( y  e.  S ,  C ,  B ) )
8079mpteq2dva 4378 . . . . 5  |-  ( (
ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  ->  ( y  e.  A  |->  ( G `
 y ) )  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) )
8156, 80eqtrd 2475 . . . 4  |-  ( (
ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  ->  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) )
8253, 81jca 532 . . 3  |-  ( (
ph  /\  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) )  ->  ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )
8347, 82impbida 828 . 2  |-  ( ph  ->  ( ( S  C_  A  /\  G  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) )  <->  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) ) )
84 pw2f1o.1 . . . 4  |-  ( ph  ->  A  e.  V )
85 elpw2g 4455 . . . 4  |-  ( A  e.  V  ->  ( S  e.  ~P A  <->  S 
C_  A ) )
8684, 85syl 16 . . 3  |-  ( ph  ->  ( S  e.  ~P A 
<->  S  C_  A )
)
87 eleq1 2503 . . . . . . 7  |-  ( z  =  y  ->  (
z  e.  S  <->  y  e.  S ) )
8887ifbid 3811 . . . . . 6  |-  ( z  =  y  ->  if ( z  e.  S ,  C ,  B )  =  if ( y  e.  S ,  C ,  B ) )
8988cbvmptv 4383 . . . . 5  |-  ( z  e.  A  |->  if ( z  e.  S ,  C ,  B )
)  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B )
)
9089a1i 11 . . . 4  |-  ( ph  ->  ( z  e.  A  |->  if ( z  e.  S ,  C ,  B ) )  =  ( y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) )
9190eqeq2d 2454 . . 3  |-  ( ph  ->  ( G  =  ( z  e.  A  |->  if ( z  e.  S ,  C ,  B ) )  <->  G  =  (
y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) )
9286, 91anbi12d 710 . 2  |-  ( ph  ->  ( ( S  e. 
~P A  /\  G  =  ( z  e.  A  |->  if ( z  e.  S ,  C ,  B ) ) )  <-> 
( S  C_  A  /\  G  =  (
y  e.  A  |->  if ( y  e.  S ,  C ,  B ) ) ) ) )
93 prex 4534 . . . 4  |-  { B ,  C }  e.  _V
94 elmapg 7227 . . . 4  |-  ( ( { B ,  C }  e.  _V  /\  A  e.  V )  ->  ( G  e.  ( { B ,  C }  ^m  A )  <->  G : A
--> { B ,  C } ) )
9593, 84, 94sylancr 663 . . 3  |-  ( ph  ->  ( G  e.  ( { B ,  C }  ^m  A )  <->  G : A
--> { B ,  C } ) )
9695anbi1d 704 . 2  |-  ( ph  ->  ( ( G  e.  ( { B ,  C }  ^m  A )  /\  S  =  ( `' G " { C } ) )  <->  ( G : A --> { B ,  C }  /\  S  =  ( `' G " { C } ) ) ) )
9783, 92, 963bitr4d 285 1  |-  ( ph  ->  ( ( S  e. 
~P A  /\  G  =  ( z  e.  A  |->  if ( z  e.  S ,  C ,  B ) ) )  <-> 
( G  e.  ( { B ,  C }  ^m  A )  /\  S  =  ( `' G " { C }
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2606   _Vcvv 2972    C_ wss 3328   ifcif 3791   ~Pcpw 3860   {csn 3877   {cpr 3879    e. cmpt 4350   `'ccnv 4839   dom cdm 4840   "cima 4843    Fn wfn 5413   -->wf 5414   ` cfv 5418  (class class class)co 6091    ^m cmap 7214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-map 7216
This theorem is referenced by:  pw2f1o  7416  sqff1o  22520
  Copyright terms: Public domain W3C validator