Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pw2f1ocnv Structured version   Unicode version

Theorem pw2f1ocnv 29295
Description: Define a bijection between characteristic functions and subsets. EDITORIAL: extracted from pw2en 7414, which can be easily reproved in terms of this. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 9-Jul-2015.)
Hypothesis
Ref Expression
pw2f1o2.f  |-  F  =  ( x  e.  ( 2o  ^m  A ) 
|->  ( `' x " { 1o } ) )
Assertion
Ref Expression
pw2f1ocnv  |-  ( A  e.  V  ->  ( F : ( 2o  ^m  A ) -1-1-onto-> ~P A  /\  `' F  =  ( y  e.  ~P A  |->  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) ) ) )
Distinct variable groups:    x, A, y, z    x, V, y
Allowed substitution hints:    F( x, y, z)    V( z)

Proof of Theorem pw2f1ocnv
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 pw2f1o2.f . 2  |-  F  =  ( x  e.  ( 2o  ^m  A ) 
|->  ( `' x " { 1o } ) )
2 vex 2973 . . . 4  |-  x  e. 
_V
32cnvex 6524 . . 3  |-  `' x  e.  _V
4 imaexg 6514 . . 3  |-  ( `' x  e.  _V  ->  ( `' x " { 1o } )  e.  _V )
53, 4mp1i 12 . 2  |-  ( ( A  e.  V  /\  x  e.  ( 2o  ^m  A ) )  -> 
( `' x " { 1o } )  e. 
_V )
6 mptexg 5944 . . 3  |-  ( A  e.  V  ->  (
z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) )  e.  _V )
76adantr 462 . 2  |-  ( ( A  e.  V  /\  y  e.  ~P A
)  ->  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) )  e.  _V )
8 2on 6924 . . . . . 6  |-  2o  e.  On
9 elmapg 7223 . . . . . 6  |-  ( ( 2o  e.  On  /\  A  e.  V )  ->  ( x  e.  ( 2o  ^m  A )  <-> 
x : A --> 2o ) )
108, 9mpan 665 . . . . 5  |-  ( A  e.  V  ->  (
x  e.  ( 2o 
^m  A )  <->  x : A
--> 2o ) )
1110anbi1d 699 . . . 4  |-  ( A  e.  V  ->  (
( x  e.  ( 2o  ^m  A )  /\  y  =  ( `' x " { 1o } ) )  <->  ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) ) ) )
12 1on 6923 . . . . . . . . . . . . 13  |-  1o  e.  On
1312elexi 2980 . . . . . . . . . . . 12  |-  1o  e.  _V
1413sucid 4794 . . . . . . . . . . 11  |-  1o  e.  suc  1o
15 df-2o 6917 . . . . . . . . . . 11  |-  2o  =  suc  1o
1614, 15eleqtrri 2514 . . . . . . . . . 10  |-  1o  e.  2o
17 0ex 4419 . . . . . . . . . . . 12  |-  (/)  e.  _V
1817prid1 3980 . . . . . . . . . . 11  |-  (/)  e.  { (/)
,  { (/) } }
19 df2o2 6930 . . . . . . . . . . 11  |-  2o  =  { (/) ,  { (/) } }
2018, 19eleqtrri 2514 . . . . . . . . . 10  |-  (/)  e.  2o
2116, 20keepel 3854 . . . . . . . . 9  |-  if ( z  e.  y ,  1o ,  (/) )  e.  2o
2221rgenw 2781 . . . . . . . 8  |-  A. z  e.  A  if (
z  e.  y ,  1o ,  (/) )  e.  2o
23 eqid 2441 . . . . . . . . 9  |-  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) )  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) )
2423fmpt 5861 . . . . . . . 8  |-  ( A. z  e.  A  if ( z  e.  y ,  1o ,  (/) )  e.  2o  <->  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) : A --> 2o )
2522, 24mpbi 208 . . . . . . 7  |-  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) : A --> 2o
26 simpr 458 . . . . . . . 8  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )
2726feq1d 5543 . . . . . . 7  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  ( x : A --> 2o  <->  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) : A --> 2o ) )
2825, 27mpbiri 233 . . . . . 6  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  x : A
--> 2o )
2926fveq1d 5690 . . . . . . . . . . . . 13  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  ( x `  w )  =  ( ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) `  w
) )
30 elequ1 1764 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  (
z  e.  y  <->  w  e.  y ) )
3130ifbid 3808 . . . . . . . . . . . . . 14  |-  ( z  =  w  ->  if ( z  e.  y ,  1o ,  (/) )  =  if (
w  e.  y ,  1o ,  (/) ) )
3213, 17keepel 3854 . . . . . . . . . . . . . 14  |-  if ( w  e.  y ,  1o ,  (/) )  e. 
_V
3331, 23, 32fvmpt 5771 . . . . . . . . . . . . 13  |-  ( w  e.  A  ->  (
( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) `  w
)  =  if ( w  e.  y ,  1o ,  (/) ) )
3429, 33sylan9eq 2493 . . . . . . . . . . . 12  |-  ( ( ( y  C_  A  /\  x  =  (
z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  /\  w  e.  A )  ->  ( x `  w
)  =  if ( w  e.  y ,  1o ,  (/) ) )
3534eqeq1d 2449 . . . . . . . . . . 11  |-  ( ( ( y  C_  A  /\  x  =  (
z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  /\  w  e.  A )  ->  ( ( x `  w )  =  1o  <->  if ( w  e.  y ,  1o ,  (/) )  =  1o )
)
36 iftrue 3794 . . . . . . . . . . . 12  |-  ( w  e.  y  ->  if ( w  e.  y ,  1o ,  (/) )  =  1o )
37 noel 3638 . . . . . . . . . . . . . 14  |-  -.  (/)  e.  (/)
38 iffalse 3796 . . . . . . . . . . . . . . . 16  |-  ( -.  w  e.  y  ->  if ( w  e.  y ,  1o ,  (/) )  =  (/) )
3938eqeq1d 2449 . . . . . . . . . . . . . . 15  |-  ( -.  w  e.  y  -> 
( if ( w  e.  y ,  1o ,  (/) )  =  1o  <->  (/)  =  1o ) )
40 0lt1o 6940 . . . . . . . . . . . . . . . 16  |-  (/)  e.  1o
41 eleq2 2502 . . . . . . . . . . . . . . . 16  |-  ( (/)  =  1o  ->  ( (/)  e.  (/)  <->  (/)  e.  1o ) )
4240, 41mpbiri 233 . . . . . . . . . . . . . . 15  |-  ( (/)  =  1o  ->  (/)  e.  (/) )
4339, 42syl6bi 228 . . . . . . . . . . . . . 14  |-  ( -.  w  e.  y  -> 
( if ( w  e.  y ,  1o ,  (/) )  =  1o 
->  (/)  e.  (/) ) )
4437, 43mtoi 178 . . . . . . . . . . . . 13  |-  ( -.  w  e.  y  ->  -.  if ( w  e.  y ,  1o ,  (/) )  =  1o )
4544con4i 130 . . . . . . . . . . . 12  |-  ( if ( w  e.  y ,  1o ,  (/) )  =  1o  ->  w  e.  y )
4636, 45impbii 188 . . . . . . . . . . 11  |-  ( w  e.  y  <->  if (
w  e.  y ,  1o ,  (/) )  =  1o )
4735, 46syl6rbbr 264 . . . . . . . . . 10  |-  ( ( ( y  C_  A  /\  x  =  (
z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  /\  w  e.  A )  ->  ( w  e.  y  <-> 
( x `  w
)  =  1o ) )
48 fvex 5698 . . . . . . . . . . 11  |-  ( x `
 w )  e. 
_V
4948elsnc 3898 . . . . . . . . . 10  |-  ( ( x `  w )  e.  { 1o }  <->  ( x `  w )  =  1o )
5047, 49syl6bbr 263 . . . . . . . . 9  |-  ( ( ( y  C_  A  /\  x  =  (
z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  /\  w  e.  A )  ->  ( w  e.  y  <-> 
( x `  w
)  e.  { 1o } ) )
5150pm5.32da 636 . . . . . . . 8  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  ( (
w  e.  A  /\  w  e.  y )  <->  ( w  e.  A  /\  ( x `  w
)  e.  { 1o } ) ) )
52 ssel 3347 . . . . . . . . . 10  |-  ( y 
C_  A  ->  (
w  e.  y  ->  w  e.  A )
)
5352adantr 462 . . . . . . . . 9  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  ( w  e.  y  ->  w  e.  A ) )
5453pm4.71rd 630 . . . . . . . 8  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  ( w  e.  y  <->  ( w  e.  A  /\  w  e.  y ) ) )
55 ffn 5556 . . . . . . . . 9  |-  ( x : A --> 2o  ->  x  Fn  A )
56 elpreima 5820 . . . . . . . . 9  |-  ( x  Fn  A  ->  (
w  e.  ( `' x " { 1o } )  <->  ( w  e.  A  /\  (
x `  w )  e.  { 1o } ) ) )
5728, 55, 563syl 20 . . . . . . . 8  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  ( w  e.  ( `' x " { 1o } )  <->  ( w  e.  A  /\  (
x `  w )  e.  { 1o } ) ) )
5851, 54, 573bitr4d 285 . . . . . . 7  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  ( w  e.  y  <->  w  e.  ( `' x " { 1o } ) ) )
5958eqrdv 2439 . . . . . 6  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  y  =  ( `' x " { 1o } ) )
6028, 59jca 529 . . . . 5  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) ) )
61 simpr 458 . . . . . . 7  |-  ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o }
) )  ->  y  =  ( `' x " { 1o } ) )
62 cnvimass 5186 . . . . . . . 8  |-  ( `' x " { 1o } )  C_  dom  x
63 fdm 5560 . . . . . . . . 9  |-  ( x : A --> 2o  ->  dom  x  =  A )
6463adantr 462 . . . . . . . 8  |-  ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o }
) )  ->  dom  x  =  A )
6562, 64syl5sseq 3401 . . . . . . 7  |-  ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o }
) )  ->  ( `' x " { 1o } )  C_  A
)
6661, 65eqsstrd 3387 . . . . . 6  |-  ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o }
) )  ->  y  C_  A )
67 simplr 749 . . . . . . . . . . . . . 14  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  y  =  ( `' x " { 1o } ) )
6867eleq2d 2508 . . . . . . . . . . . . 13  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( w  e.  y  <-> 
w  e.  ( `' x " { 1o } ) ) )
6955adantr 462 . . . . . . . . . . . . . . 15  |-  ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o }
) )  ->  x  Fn  A )
70 fnbrfvb 5729 . . . . . . . . . . . . . . 15  |-  ( ( x  Fn  A  /\  w  e.  A )  ->  ( ( x `  w )  =  1o  <->  w x 1o ) )
7169, 70sylan 468 . . . . . . . . . . . . . 14  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( ( x `  w )  =  1o  <->  w x 1o ) )
72 vex 2973 . . . . . . . . . . . . . . . 16  |-  w  e. 
_V
7372eliniseg 5195 . . . . . . . . . . . . . . 15  |-  ( 1o  e.  On  ->  (
w  e.  ( `' x " { 1o } )  <->  w x 1o ) )
7412, 73ax-mp 5 . . . . . . . . . . . . . 14  |-  ( w  e.  ( `' x " { 1o } )  <-> 
w x 1o )
7571, 74syl6bbr 263 . . . . . . . . . . . . 13  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( ( x `  w )  =  1o  <->  w  e.  ( `' x " { 1o } ) ) )
7668, 75bitr4d 256 . . . . . . . . . . . 12  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( w  e.  y  <-> 
( x `  w
)  =  1o ) )
7776biimpa 481 . . . . . . . . . . 11  |-  ( ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  /\  w  e.  y )  ->  (
x `  w )  =  1o )
7836adantl 463 . . . . . . . . . . 11  |-  ( ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  /\  w  e.  y )  ->  if ( w  e.  y ,  1o ,  (/) )  =  1o )
7977, 78eqtr4d 2476 . . . . . . . . . 10  |-  ( ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  /\  w  e.  y )  ->  (
x `  w )  =  if ( w  e.  y ,  1o ,  (/) ) )
80 ffvelrn 5838 . . . . . . . . . . . . . . . . . 18  |-  ( ( x : A --> 2o  /\  w  e.  A )  ->  ( x `  w
)  e.  2o )
8180adantlr 709 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( x `  w
)  e.  2o )
82 df2o3 6929 . . . . . . . . . . . . . . . . 17  |-  2o  =  { (/) ,  1o }
8381, 82syl6eleq 2531 . . . . . . . . . . . . . . . 16  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( x `  w
)  e.  { (/) ,  1o } )
8448elpr 3892 . . . . . . . . . . . . . . . 16  |-  ( ( x `  w )  e.  { (/) ,  1o } 
<->  ( ( x `  w )  =  (/)  \/  ( x `  w
)  =  1o ) )
8583, 84sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( ( x `  w )  =  (/)  \/  ( x `  w
)  =  1o ) )
8685ord 377 . . . . . . . . . . . . . 14  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( -.  ( x `
 w )  =  (/)  ->  ( x `  w )  =  1o ) )
8786, 76sylibrd 234 . . . . . . . . . . . . 13  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( -.  ( x `
 w )  =  (/)  ->  w  e.  y ) )
8887con1d 124 . . . . . . . . . . . 12  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( -.  w  e.  y  ->  ( x `  w )  =  (/) ) )
8988imp 429 . . . . . . . . . . 11  |-  ( ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  /\  -.  w  e.  y )  ->  ( x `  w
)  =  (/) )
9038adantl 463 . . . . . . . . . . 11  |-  ( ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  /\  -.  w  e.  y )  ->  if ( w  e.  y ,  1o ,  (/) )  =  (/) )
9189, 90eqtr4d 2476 . . . . . . . . . 10  |-  ( ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  /\  -.  w  e.  y )  ->  ( x `  w
)  =  if ( w  e.  y ,  1o ,  (/) ) )
9279, 91pm2.61dan 784 . . . . . . . . 9  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( x `  w
)  =  if ( w  e.  y ,  1o ,  (/) ) )
9333adantl 463 . . . . . . . . 9  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) `  w )  =  if ( w  e.  y ,  1o ,  (/) ) )
9492, 93eqtr4d 2476 . . . . . . . 8  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( x `  w
)  =  ( ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) `  w
) )
9594ralrimiva 2797 . . . . . . 7  |-  ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o }
) )  ->  A. w  e.  A  ( x `  w )  =  ( ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) `  w
) )
96 ffn 5556 . . . . . . . . 9  |-  ( ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) : A --> 2o  ->  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) )  Fn  A )
9725, 96ax-mp 5 . . . . . . . 8  |-  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) )  Fn  A
98 eqfnfv 5794 . . . . . . . 8  |-  ( ( x  Fn  A  /\  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) )  Fn  A
)  ->  ( x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) )  <->  A. w  e.  A  ( x `  w )  =  ( ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) `  w
) ) )
9969, 97, 98sylancl 657 . . . . . . 7  |-  ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o }
) )  ->  (
x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) )  <->  A. w  e.  A  ( x `  w
)  =  ( ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) `  w
) ) )
10095, 99mpbird 232 . . . . . 6  |-  ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o }
) )  ->  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )
10166, 100jca 529 . . . . 5  |-  ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o }
) )  ->  (
y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) ) )
10260, 101impbii 188 . . . 4  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  <->  ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) ) )
10311, 102syl6bbr 263 . . 3  |-  ( A  e.  V  ->  (
( x  e.  ( 2o  ^m  A )  /\  y  =  ( `' x " { 1o } ) )  <->  ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) ) ) )
104 selpw 3864 . . . 4  |-  ( y  e.  ~P A  <->  y  C_  A )
105104anbi1i 690 . . 3  |-  ( ( y  e.  ~P A  /\  x  =  (
z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  <->  ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) ) )
106103, 105syl6bbr 263 . 2  |-  ( A  e.  V  ->  (
( x  e.  ( 2o  ^m  A )  /\  y  =  ( `' x " { 1o } ) )  <->  ( y  e.  ~P A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) ) ) )
1071, 5, 7, 106f1ocnvd 6308 1  |-  ( A  e.  V  ->  ( F : ( 2o  ^m  A ) -1-1-onto-> ~P A  /\  `' F  =  ( y  e.  ~P A  |->  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713   _Vcvv 2970    C_ wss 3325   (/)c0 3634   ifcif 3788   ~Pcpw 3857   {csn 3874   {cpr 3876   class class class wbr 4289    e. cmpt 4347   Oncon0 4715   suc csuc 4717   `'ccnv 4835   dom cdm 4836   "cima 4839    Fn wfn 5410   -->wf 5411   -1-1-onto->wf1o 5414   ` cfv 5415  (class class class)co 6090   1oc1o 6909   2oc2o 6910    ^m cmap 7210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1o 6916  df-2o 6917  df-map 7212
This theorem is referenced by:  pw2f1o2  29296
  Copyright terms: Public domain W3C validator