Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pw2f1ocnv Structured version   Unicode version

Theorem pw2f1ocnv 29386
Description: Define a bijection between characteristic functions and subsets. EDITORIAL: extracted from pw2en 7418, which can be easily reproved in terms of this. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 9-Jul-2015.)
Hypothesis
Ref Expression
pw2f1o2.f  |-  F  =  ( x  e.  ( 2o  ^m  A ) 
|->  ( `' x " { 1o } ) )
Assertion
Ref Expression
pw2f1ocnv  |-  ( A  e.  V  ->  ( F : ( 2o  ^m  A ) -1-1-onto-> ~P A  /\  `' F  =  ( y  e.  ~P A  |->  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) ) ) )
Distinct variable groups:    x, A, y, z    x, V, y
Allowed substitution hints:    F( x, y, z)    V( z)

Proof of Theorem pw2f1ocnv
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 pw2f1o2.f . 2  |-  F  =  ( x  e.  ( 2o  ^m  A ) 
|->  ( `' x " { 1o } ) )
2 vex 2975 . . . 4  |-  x  e. 
_V
32cnvex 6525 . . 3  |-  `' x  e.  _V
4 imaexg 6515 . . 3  |-  ( `' x  e.  _V  ->  ( `' x " { 1o } )  e.  _V )
53, 4mp1i 12 . 2  |-  ( ( A  e.  V  /\  x  e.  ( 2o  ^m  A ) )  -> 
( `' x " { 1o } )  e. 
_V )
6 mptexg 5947 . . 3  |-  ( A  e.  V  ->  (
z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) )  e.  _V )
76adantr 465 . 2  |-  ( ( A  e.  V  /\  y  e.  ~P A
)  ->  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) )  e.  _V )
8 2on 6928 . . . . . 6  |-  2o  e.  On
9 elmapg 7227 . . . . . 6  |-  ( ( 2o  e.  On  /\  A  e.  V )  ->  ( x  e.  ( 2o  ^m  A )  <-> 
x : A --> 2o ) )
108, 9mpan 670 . . . . 5  |-  ( A  e.  V  ->  (
x  e.  ( 2o 
^m  A )  <->  x : A
--> 2o ) )
1110anbi1d 704 . . . 4  |-  ( A  e.  V  ->  (
( x  e.  ( 2o  ^m  A )  /\  y  =  ( `' x " { 1o } ) )  <->  ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) ) ) )
12 1on 6927 . . . . . . . . . . . . 13  |-  1o  e.  On
1312elexi 2982 . . . . . . . . . . . 12  |-  1o  e.  _V
1413sucid 4798 . . . . . . . . . . 11  |-  1o  e.  suc  1o
15 df-2o 6921 . . . . . . . . . . 11  |-  2o  =  suc  1o
1614, 15eleqtrri 2516 . . . . . . . . . 10  |-  1o  e.  2o
17 0ex 4422 . . . . . . . . . . . 12  |-  (/)  e.  _V
1817prid1 3983 . . . . . . . . . . 11  |-  (/)  e.  { (/)
,  { (/) } }
19 df2o2 6934 . . . . . . . . . . 11  |-  2o  =  { (/) ,  { (/) } }
2018, 19eleqtrri 2516 . . . . . . . . . 10  |-  (/)  e.  2o
2116, 20keepel 3857 . . . . . . . . 9  |-  if ( z  e.  y ,  1o ,  (/) )  e.  2o
2221rgenw 2783 . . . . . . . 8  |-  A. z  e.  A  if (
z  e.  y ,  1o ,  (/) )  e.  2o
23 eqid 2443 . . . . . . . . 9  |-  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) )  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) )
2423fmpt 5864 . . . . . . . 8  |-  ( A. z  e.  A  if ( z  e.  y ,  1o ,  (/) )  e.  2o  <->  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) : A --> 2o )
2522, 24mpbi 208 . . . . . . 7  |-  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) : A --> 2o
26 simpr 461 . . . . . . . 8  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )
2726feq1d 5546 . . . . . . 7  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  ( x : A --> 2o  <->  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) : A --> 2o ) )
2825, 27mpbiri 233 . . . . . 6  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  x : A
--> 2o )
2926fveq1d 5693 . . . . . . . . . . . . 13  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  ( x `  w )  =  ( ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) `  w
) )
30 elequ1 1759 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  (
z  e.  y  <->  w  e.  y ) )
3130ifbid 3811 . . . . . . . . . . . . . 14  |-  ( z  =  w  ->  if ( z  e.  y ,  1o ,  (/) )  =  if (
w  e.  y ,  1o ,  (/) ) )
3213, 17keepel 3857 . . . . . . . . . . . . . 14  |-  if ( w  e.  y ,  1o ,  (/) )  e. 
_V
3331, 23, 32fvmpt 5774 . . . . . . . . . . . . 13  |-  ( w  e.  A  ->  (
( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) `  w
)  =  if ( w  e.  y ,  1o ,  (/) ) )
3429, 33sylan9eq 2495 . . . . . . . . . . . 12  |-  ( ( ( y  C_  A  /\  x  =  (
z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  /\  w  e.  A )  ->  ( x `  w
)  =  if ( w  e.  y ,  1o ,  (/) ) )
3534eqeq1d 2451 . . . . . . . . . . 11  |-  ( ( ( y  C_  A  /\  x  =  (
z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  /\  w  e.  A )  ->  ( ( x `  w )  =  1o  <->  if ( w  e.  y ,  1o ,  (/) )  =  1o )
)
36 iftrue 3797 . . . . . . . . . . . 12  |-  ( w  e.  y  ->  if ( w  e.  y ,  1o ,  (/) )  =  1o )
37 noel 3641 . . . . . . . . . . . . . 14  |-  -.  (/)  e.  (/)
38 iffalse 3799 . . . . . . . . . . . . . . . 16  |-  ( -.  w  e.  y  ->  if ( w  e.  y ,  1o ,  (/) )  =  (/) )
3938eqeq1d 2451 . . . . . . . . . . . . . . 15  |-  ( -.  w  e.  y  -> 
( if ( w  e.  y ,  1o ,  (/) )  =  1o  <->  (/)  =  1o ) )
40 0lt1o 6944 . . . . . . . . . . . . . . . 16  |-  (/)  e.  1o
41 eleq2 2504 . . . . . . . . . . . . . . . 16  |-  ( (/)  =  1o  ->  ( (/)  e.  (/)  <->  (/)  e.  1o ) )
4240, 41mpbiri 233 . . . . . . . . . . . . . . 15  |-  ( (/)  =  1o  ->  (/)  e.  (/) )
4339, 42syl6bi 228 . . . . . . . . . . . . . 14  |-  ( -.  w  e.  y  -> 
( if ( w  e.  y ,  1o ,  (/) )  =  1o 
->  (/)  e.  (/) ) )
4437, 43mtoi 178 . . . . . . . . . . . . 13  |-  ( -.  w  e.  y  ->  -.  if ( w  e.  y ,  1o ,  (/) )  =  1o )
4544con4i 130 . . . . . . . . . . . 12  |-  ( if ( w  e.  y ,  1o ,  (/) )  =  1o  ->  w  e.  y )
4636, 45impbii 188 . . . . . . . . . . 11  |-  ( w  e.  y  <->  if (
w  e.  y ,  1o ,  (/) )  =  1o )
4735, 46syl6rbbr 264 . . . . . . . . . 10  |-  ( ( ( y  C_  A  /\  x  =  (
z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  /\  w  e.  A )  ->  ( w  e.  y  <-> 
( x `  w
)  =  1o ) )
48 fvex 5701 . . . . . . . . . . 11  |-  ( x `
 w )  e. 
_V
4948elsnc 3901 . . . . . . . . . 10  |-  ( ( x `  w )  e.  { 1o }  <->  ( x `  w )  =  1o )
5047, 49syl6bbr 263 . . . . . . . . 9  |-  ( ( ( y  C_  A  /\  x  =  (
z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  /\  w  e.  A )  ->  ( w  e.  y  <-> 
( x `  w
)  e.  { 1o } ) )
5150pm5.32da 641 . . . . . . . 8  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  ( (
w  e.  A  /\  w  e.  y )  <->  ( w  e.  A  /\  ( x `  w
)  e.  { 1o } ) ) )
52 ssel 3350 . . . . . . . . . 10  |-  ( y 
C_  A  ->  (
w  e.  y  ->  w  e.  A )
)
5352adantr 465 . . . . . . . . 9  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  ( w  e.  y  ->  w  e.  A ) )
5453pm4.71rd 635 . . . . . . . 8  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  ( w  e.  y  <->  ( w  e.  A  /\  w  e.  y ) ) )
55 ffn 5559 . . . . . . . . 9  |-  ( x : A --> 2o  ->  x  Fn  A )
56 elpreima 5823 . . . . . . . . 9  |-  ( x  Fn  A  ->  (
w  e.  ( `' x " { 1o } )  <->  ( w  e.  A  /\  (
x `  w )  e.  { 1o } ) ) )
5728, 55, 563syl 20 . . . . . . . 8  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  ( w  e.  ( `' x " { 1o } )  <->  ( w  e.  A  /\  (
x `  w )  e.  { 1o } ) ) )
5851, 54, 573bitr4d 285 . . . . . . 7  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  ( w  e.  y  <->  w  e.  ( `' x " { 1o } ) ) )
5958eqrdv 2441 . . . . . 6  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  y  =  ( `' x " { 1o } ) )
6028, 59jca 532 . . . . 5  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  ->  ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) ) )
61 simpr 461 . . . . . . 7  |-  ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o }
) )  ->  y  =  ( `' x " { 1o } ) )
62 cnvimass 5189 . . . . . . . 8  |-  ( `' x " { 1o } )  C_  dom  x
63 fdm 5563 . . . . . . . . 9  |-  ( x : A --> 2o  ->  dom  x  =  A )
6463adantr 465 . . . . . . . 8  |-  ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o }
) )  ->  dom  x  =  A )
6562, 64syl5sseq 3404 . . . . . . 7  |-  ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o }
) )  ->  ( `' x " { 1o } )  C_  A
)
6661, 65eqsstrd 3390 . . . . . 6  |-  ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o }
) )  ->  y  C_  A )
67 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  y  =  ( `' x " { 1o } ) )
6867eleq2d 2510 . . . . . . . . . . . . 13  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( w  e.  y  <-> 
w  e.  ( `' x " { 1o } ) ) )
6955adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o }
) )  ->  x  Fn  A )
70 fnbrfvb 5732 . . . . . . . . . . . . . . 15  |-  ( ( x  Fn  A  /\  w  e.  A )  ->  ( ( x `  w )  =  1o  <->  w x 1o ) )
7169, 70sylan 471 . . . . . . . . . . . . . 14  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( ( x `  w )  =  1o  <->  w x 1o ) )
72 vex 2975 . . . . . . . . . . . . . . . 16  |-  w  e. 
_V
7372eliniseg 5198 . . . . . . . . . . . . . . 15  |-  ( 1o  e.  On  ->  (
w  e.  ( `' x " { 1o } )  <->  w x 1o ) )
7412, 73ax-mp 5 . . . . . . . . . . . . . 14  |-  ( w  e.  ( `' x " { 1o } )  <-> 
w x 1o )
7571, 74syl6bbr 263 . . . . . . . . . . . . 13  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( ( x `  w )  =  1o  <->  w  e.  ( `' x " { 1o } ) ) )
7668, 75bitr4d 256 . . . . . . . . . . . 12  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( w  e.  y  <-> 
( x `  w
)  =  1o ) )
7776biimpa 484 . . . . . . . . . . 11  |-  ( ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  /\  w  e.  y )  ->  (
x `  w )  =  1o )
7836adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  /\  w  e.  y )  ->  if ( w  e.  y ,  1o ,  (/) )  =  1o )
7977, 78eqtr4d 2478 . . . . . . . . . 10  |-  ( ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  /\  w  e.  y )  ->  (
x `  w )  =  if ( w  e.  y ,  1o ,  (/) ) )
80 ffvelrn 5841 . . . . . . . . . . . . . . . . . 18  |-  ( ( x : A --> 2o  /\  w  e.  A )  ->  ( x `  w
)  e.  2o )
8180adantlr 714 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( x `  w
)  e.  2o )
82 df2o3 6933 . . . . . . . . . . . . . . . . 17  |-  2o  =  { (/) ,  1o }
8381, 82syl6eleq 2533 . . . . . . . . . . . . . . . 16  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( x `  w
)  e.  { (/) ,  1o } )
8448elpr 3895 . . . . . . . . . . . . . . . 16  |-  ( ( x `  w )  e.  { (/) ,  1o } 
<->  ( ( x `  w )  =  (/)  \/  ( x `  w
)  =  1o ) )
8583, 84sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( ( x `  w )  =  (/)  \/  ( x `  w
)  =  1o ) )
8685ord 377 . . . . . . . . . . . . . 14  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( -.  ( x `
 w )  =  (/)  ->  ( x `  w )  =  1o ) )
8786, 76sylibrd 234 . . . . . . . . . . . . 13  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( -.  ( x `
 w )  =  (/)  ->  w  e.  y ) )
8887con1d 124 . . . . . . . . . . . 12  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( -.  w  e.  y  ->  ( x `  w )  =  (/) ) )
8988imp 429 . . . . . . . . . . 11  |-  ( ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  /\  -.  w  e.  y )  ->  ( x `  w
)  =  (/) )
9038adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  /\  -.  w  e.  y )  ->  if ( w  e.  y ,  1o ,  (/) )  =  (/) )
9189, 90eqtr4d 2478 . . . . . . . . . 10  |-  ( ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  /\  -.  w  e.  y )  ->  ( x `  w
)  =  if ( w  e.  y ,  1o ,  (/) ) )
9279, 91pm2.61dan 789 . . . . . . . . 9  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( x `  w
)  =  if ( w  e.  y ,  1o ,  (/) ) )
9333adantl 466 . . . . . . . . 9  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) `  w )  =  if ( w  e.  y ,  1o ,  (/) ) )
9492, 93eqtr4d 2478 . . . . . . . 8  |-  ( ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) )  /\  w  e.  A )  ->  ( x `  w
)  =  ( ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) `  w
) )
9594ralrimiva 2799 . . . . . . 7  |-  ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o }
) )  ->  A. w  e.  A  ( x `  w )  =  ( ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) `  w
) )
96 ffn 5559 . . . . . . . . 9  |-  ( ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) : A --> 2o  ->  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) )  Fn  A )
9725, 96ax-mp 5 . . . . . . . 8  |-  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) )  Fn  A
98 eqfnfv 5797 . . . . . . . 8  |-  ( ( x  Fn  A  /\  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) )  Fn  A
)  ->  ( x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) )  <->  A. w  e.  A  ( x `  w )  =  ( ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) `  w
) ) )
9969, 97, 98sylancl 662 . . . . . . 7  |-  ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o }
) )  ->  (
x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) )  <->  A. w  e.  A  ( x `  w
)  =  ( ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) `  w
) ) )
10095, 99mpbird 232 . . . . . 6  |-  ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o }
) )  ->  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )
10166, 100jca 532 . . . . 5  |-  ( ( x : A --> 2o  /\  y  =  ( `' x " { 1o }
) )  ->  (
y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) ) )
10260, 101impbii 188 . . . 4  |-  ( ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  <->  ( x : A --> 2o  /\  y  =  ( `' x " { 1o } ) ) )
10311, 102syl6bbr 263 . . 3  |-  ( A  e.  V  ->  (
( x  e.  ( 2o  ^m  A )  /\  y  =  ( `' x " { 1o } ) )  <->  ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) ) ) )
104 selpw 3867 . . . 4  |-  ( y  e.  ~P A  <->  y  C_  A )
105104anbi1i 695 . . 3  |-  ( ( y  e.  ~P A  /\  x  =  (
z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) )  <->  ( y  C_  A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) ) )
106103, 105syl6bbr 263 . 2  |-  ( A  e.  V  ->  (
( x  e.  ( 2o  ^m  A )  /\  y  =  ( `' x " { 1o } ) )  <->  ( y  e.  ~P A  /\  x  =  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) ) ) )
1071, 5, 7, 106f1ocnvd 6309 1  |-  ( A  e.  V  ->  ( F : ( 2o  ^m  A ) -1-1-onto-> ~P A  /\  `' F  =  ( y  e.  ~P A  |->  ( z  e.  A  |->  if ( z  e.  y ,  1o ,  (/) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715   _Vcvv 2972    C_ wss 3328   (/)c0 3637   ifcif 3791   ~Pcpw 3860   {csn 3877   {cpr 3879   class class class wbr 4292    e. cmpt 4350   Oncon0 4719   suc csuc 4721   `'ccnv 4839   dom cdm 4840   "cima 4843    Fn wfn 5413   -->wf 5414   -1-1-onto->wf1o 5417   ` cfv 5418  (class class class)co 6091   1oc1o 6913   2oc2o 6914    ^m cmap 7214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-1o 6920  df-2o 6921  df-map 7216
This theorem is referenced by:  pw2f1o2  29387
  Copyright terms: Public domain W3C validator