MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptval2 Structured version   Unicode version

Theorem ptval2 20396
Description: The value of the product topology function. (Contributed by Mario Carneiro, 7-Feb-2015.)
Hypotheses
Ref Expression
ptval2.1  |-  J  =  ( Xt_ `  F
)
ptval2.2  |-  X  = 
U. J
ptval2.3  |-  G  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
Assertion
Ref Expression
ptval2  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  J  =  ( topGen `  ( fi `  ( { X }  u.  ran  G ) ) ) )
Distinct variable groups:    u, k, w, A    k, F, u, w    k, V, u, w    w, X
Allowed substitution hints:    G( w, u, k)    J( w, u, k)    X( u, k)

Proof of Theorem ptval2
Dummy variables  g  n  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 5716 . . 3  |-  ( F : A --> Top  ->  F  Fn  A )
2 ptval2.1 . . . 4  |-  J  =  ( Xt_ `  F
)
3 eqid 2404 . . . . 5  |-  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
43ptval 20365 . . . 4  |-  ( ( A  e.  V  /\  F  Fn  A )  ->  ( Xt_ `  F
)  =  ( topGen `  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) } ) )
52, 4syl5eq 2457 . . 3  |-  ( ( A  e.  V  /\  F  Fn  A )  ->  J  =  ( topGen `  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) } ) )
61, 5sylan2 474 . 2  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  J  =  ( topGen `  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) } ) )
7 eqid 2404 . . . . 5  |-  X_ n  e.  A  U. ( F `  n )  =  X_ n  e.  A  U. ( F `  n
)
83, 7ptbasfi 20376 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }  =  ( fi `  ( {
X_ n  e.  A  U. ( F `  n
) }  u.  ran  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) ) "
u ) ) ) ) )
92ptuni 20389 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ n  e.  A  U. ( F `  n
)  =  U. J
)
10 ptval2.2 . . . . . . . 8  |-  X  = 
U. J
119, 10syl6eqr 2463 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ n  e.  A  U. ( F `  n
)  =  X )
1211sneqd 3986 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  { X_ n  e.  A  U. ( F `
 n ) }  =  { X }
)
13113ad2ant1 1020 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  k  e.  A  /\  u  e.  ( F `  k )
)  ->  X_ n  e.  A  U. ( F `
 n )  =  X )
1413mpteq1d 4478 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  k  e.  A  /\  u  e.  ( F `  k )
)  ->  ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) )  =  ( w  e.  X  |->  ( w `  k
) ) )
1514cnveqd 5001 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  k  e.  A  /\  u  e.  ( F `  k )
)  ->  `' (
w  e.  X_ n  e.  A  U. ( F `  n )  |->  ( w `  k
) )  =  `' ( w  e.  X  |->  ( w `  k
) ) )
1615imaeq1d 5158 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  k  e.  A  /\  u  e.  ( F `  k )
)  ->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n )  |->  ( w `  k
) ) " u
)  =  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
) )
1716mpt2eq3dva 6344 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) ) "
u ) )  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) ) )
18 ptval2.3 . . . . . . . 8  |-  G  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
1917, 18syl6eqr 2463 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) ) "
u ) )  =  G )
2019rneqd 5053 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ran  ( k  e.  A ,  u  e.  ( F `  k
)  |->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n )  |->  ( w `  k
) ) " u
) )  =  ran  G )
2112, 20uneq12d 3600 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( { X_ n  e.  A  U. ( F `  n ) }  u.  ran  ( k  e.  A ,  u  e.  ( F `  k
)  |->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n )  |->  ( w `  k
) ) " u
) ) )  =  ( { X }  u.  ran  G ) )
2221fveq2d 5855 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( fi `  ( { X_ n  e.  A  U. ( F `  n
) }  u.  ran  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) ) "
u ) ) ) )  =  ( fi
`  ( { X }  u.  ran  G ) ) )
238, 22eqtrd 2445 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }  =  ( fi `  ( { X }  u.  ran  G ) ) )
2423fveq2d 5855 . 2  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( topGen `  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) } )  =  ( topGen `  ( fi `  ( { X }  u.  ran  G ) ) ) )
256, 24eqtrd 2445 1  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  J  =  ( topGen `  ( fi `  ( { X }  u.  ran  G ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 976    = wceq 1407   E.wex 1635    e. wcel 1844   {cab 2389   A.wral 2756   E.wrex 2757    \ cdif 3413    u. cun 3414   {csn 3974   U.cuni 4193    |-> cmpt 4455   `'ccnv 4824   ran crn 4826   "cima 4828    Fn wfn 5566   -->wf 5567   ` cfv 5571    |-> cmpt2 6282   X_cixp 7509   Fincfn 7556   ficfi 7906   topGenctg 15054   Xt_cpt 15055   Topctop 19688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-int 4230  df-iun 4275  df-iin 4276  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-oadd 7173  df-er 7350  df-ixp 7510  df-en 7557  df-dom 7558  df-fin 7560  df-fi 7907  df-topgen 15060  df-pt 15061  df-top 19693  df-bases 19695
This theorem is referenced by:  ptrescn  20434  ptrest  31433
  Copyright terms: Public domain W3C validator