MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptuni2 Structured version   Unicode version

Theorem ptuni2 19812
Description: The base set for the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
Assertion
Ref Expression
ptuni2  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. B
)
Distinct variable groups:    B, k    x, g, y, k, z, A    g, F, k, x, y, z    g, V, k, x, y, z
Allowed substitution hints:    B( x, y, z, g)

Proof of Theorem ptuni2
StepHypRef Expression
1 ptbas.1 . . . 4  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
21ptbasid 19811 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  e.  B )
3 elssuni 4275 . . 3  |-  ( X_ k  e.  A  U. ( F `  k )  e.  B  ->  X_ k  e.  A  U. ( F `  k )  C_ 
U. B )
42, 3syl 16 . 2  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  C_  U. B )
5 simpr2 1003 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) ) )  ->  A. y  e.  A  ( g `  y
)  e.  ( F `
 y ) )
6 elssuni 4275 . . . . . . . . . . 11  |-  ( ( g `  y )  e.  ( F `  y )  ->  (
g `  y )  C_ 
U. ( F `  y ) )
76ralimi 2857 . . . . . . . . . 10  |-  ( A. y  e.  A  (
g `  y )  e.  ( F `  y
)  ->  A. y  e.  A  ( g `  y )  C_  U. ( F `  y )
)
8 ss2ixp 7479 . . . . . . . . . 10  |-  ( A. y  e.  A  (
g `  y )  C_ 
U. ( F `  y )  ->  X_ y  e.  A  ( g `  y )  C_  X_ y  e.  A  U. ( F `  y )
)
95, 7, 83syl 20 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) ) )  ->  X_ y  e.  A  ( g `  y
)  C_  X_ y  e.  A  U. ( F `
 y ) )
10 fveq2 5864 . . . . . . . . . . 11  |-  ( y  =  k  ->  ( F `  y )  =  ( F `  k ) )
1110unieqd 4255 . . . . . . . . . 10  |-  ( y  =  k  ->  U. ( F `  y )  =  U. ( F `  k ) )
1211cbvixpv 7484 . . . . . . . . 9  |-  X_ y  e.  A  U. ( F `  y )  =  X_ k  e.  A  U. ( F `  k
)
139, 12syl6sseq 3550 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) ) )  ->  X_ y  e.  A  ( g `  y
)  C_  X_ k  e.  A  U. ( F `
 k ) )
14 selpw 4017 . . . . . . . . 9  |-  ( x  e.  ~P X_ k  e.  A  U. ( F `  k )  <->  x 
C_  X_ k  e.  A  U. ( F `  k
) )
15 sseq1 3525 . . . . . . . . 9  |-  ( x  =  X_ y  e.  A  ( g `  y
)  ->  ( x  C_  X_ k  e.  A  U. ( F `  k
)  <->  X_ y  e.  A  ( g `  y
)  C_  X_ k  e.  A  U. ( F `
 k ) ) )
1614, 15syl5bb 257 . . . . . . . 8  |-  ( x  =  X_ y  e.  A  ( g `  y
)  ->  ( x  e.  ~P X_ k  e.  A  U. ( F `  k
)  <->  X_ y  e.  A  ( g `  y
)  C_  X_ k  e.  A  U. ( F `
 k ) ) )
1713, 16syl5ibrcom 222 . . . . . . 7  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) ) )  ->  ( x  = 
X_ y  e.  A  ( g `  y
)  ->  x  e.  ~P X_ k  e.  A  U. ( F `  k
) ) )
1817expimpd 603 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) )  ->  x  e.  ~P X_ k  e.  A  U. ( F `  k
) ) )
1918exlimdv 1700 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) )  /\  x  =  X_ y  e.  A  ( g `  y ) )  ->  x  e.  ~P X_ k  e.  A  U. ( F `  k )
) )
2019abssdv 3574 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }  C_  ~P X_ k  e.  A  U. ( F `  k
) )
211, 20syl5eqss 3548 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  B  C_  ~P X_ k  e.  A  U. ( F `  k )
)
22 sspwuni 4411 . . 3  |-  ( B 
C_  ~P X_ k  e.  A  U. ( F `  k
)  <->  U. B  C_  X_ k  e.  A  U. ( F `  k )
)
2321, 22sylib 196 . 2  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  U. B  C_  X_ k  e.  A  U. ( F `  k )
)
244, 23eqssd 3521 1  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   {cab 2452   A.wral 2814   E.wrex 2815    \ cdif 3473    C_ wss 3476   ~Pcpw 4010   U.cuni 4245    Fn wfn 5581   -->wf 5582   ` cfv 5586   X_cixp 7466   Fincfn 7513   Topctop 19161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-om 6679  df-ixp 7467  df-en 7514  df-fin 7517  df-top 19166
This theorem is referenced by:  ptbasin2  19814  ptbasfi  19817  ptuni  19830
  Copyright terms: Public domain W3C validator