MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptuni2 Structured version   Visualization version   Unicode version

Theorem ptuni2 20591
Description: The base set for the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
Assertion
Ref Expression
ptuni2  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. B
)
Distinct variable groups:    B, k    x, g, y, k, z, A    g, F, k, x, y, z    g, V, k, x, y, z
Allowed substitution hints:    B( x, y, z, g)

Proof of Theorem ptuni2
StepHypRef Expression
1 ptbas.1 . . . 4  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
21ptbasid 20590 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  e.  B )
3 elssuni 4227 . . 3  |-  ( X_ k  e.  A  U. ( F `  k )  e.  B  ->  X_ k  e.  A  U. ( F `  k )  C_ 
U. B )
42, 3syl 17 . 2  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  C_  U. B )
5 simpr2 1015 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) ) )  ->  A. y  e.  A  ( g `  y
)  e.  ( F `
 y ) )
6 elssuni 4227 . . . . . . . . . . 11  |-  ( ( g `  y )  e.  ( F `  y )  ->  (
g `  y )  C_ 
U. ( F `  y ) )
76ralimi 2781 . . . . . . . . . 10  |-  ( A. y  e.  A  (
g `  y )  e.  ( F `  y
)  ->  A. y  e.  A  ( g `  y )  C_  U. ( F `  y )
)
8 ss2ixp 7535 . . . . . . . . . 10  |-  ( A. y  e.  A  (
g `  y )  C_ 
U. ( F `  y )  ->  X_ y  e.  A  ( g `  y )  C_  X_ y  e.  A  U. ( F `  y )
)
95, 7, 83syl 18 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) ) )  ->  X_ y  e.  A  ( g `  y
)  C_  X_ y  e.  A  U. ( F `
 y ) )
10 fveq2 5865 . . . . . . . . . . 11  |-  ( y  =  k  ->  ( F `  y )  =  ( F `  k ) )
1110unieqd 4208 . . . . . . . . . 10  |-  ( y  =  k  ->  U. ( F `  y )  =  U. ( F `  k ) )
1211cbvixpv 7540 . . . . . . . . 9  |-  X_ y  e.  A  U. ( F `  y )  =  X_ k  e.  A  U. ( F `  k
)
139, 12syl6sseq 3478 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) ) )  ->  X_ y  e.  A  ( g `  y
)  C_  X_ k  e.  A  U. ( F `
 k ) )
14 selpw 3958 . . . . . . . . 9  |-  ( x  e.  ~P X_ k  e.  A  U. ( F `  k )  <->  x 
C_  X_ k  e.  A  U. ( F `  k
) )
15 sseq1 3453 . . . . . . . . 9  |-  ( x  =  X_ y  e.  A  ( g `  y
)  ->  ( x  C_  X_ k  e.  A  U. ( F `  k
)  <->  X_ y  e.  A  ( g `  y
)  C_  X_ k  e.  A  U. ( F `
 k ) ) )
1614, 15syl5bb 261 . . . . . . . 8  |-  ( x  =  X_ y  e.  A  ( g `  y
)  ->  ( x  e.  ~P X_ k  e.  A  U. ( F `  k
)  <->  X_ y  e.  A  ( g `  y
)  C_  X_ k  e.  A  U. ( F `
 k ) ) )
1713, 16syl5ibrcom 226 . . . . . . 7  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) ) )  ->  ( x  = 
X_ y  e.  A  ( g `  y
)  ->  x  e.  ~P X_ k  e.  A  U. ( F `  k
) ) )
1817expimpd 608 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) )  ->  x  e.  ~P X_ k  e.  A  U. ( F `  k
) ) )
1918exlimdv 1779 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) )  /\  x  =  X_ y  e.  A  ( g `  y ) )  ->  x  e.  ~P X_ k  e.  A  U. ( F `  k )
) )
2019abssdv 3503 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }  C_  ~P X_ k  e.  A  U. ( F `  k
) )
211, 20syl5eqss 3476 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  B  C_  ~P X_ k  e.  A  U. ( F `  k )
)
22 sspwuni 4367 . . 3  |-  ( B 
C_  ~P X_ k  e.  A  U. ( F `  k
)  <->  U. B  C_  X_ k  e.  A  U. ( F `  k )
)
2321, 22sylib 200 . 2  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  U. B  C_  X_ k  e.  A  U. ( F `  k )
)
244, 23eqssd 3449 1  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 985    = wceq 1444   E.wex 1663    e. wcel 1887   {cab 2437   A.wral 2737   E.wrex 2738    \ cdif 3401    C_ wss 3404   ~Pcpw 3951   U.cuni 4198    Fn wfn 5577   -->wf 5578   ` cfv 5582   X_cixp 7522   Fincfn 7569   Topctop 19917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-om 6693  df-ixp 7523  df-en 7570  df-fin 7573  df-top 19921
This theorem is referenced by:  ptbasin2  20593  ptbasfi  20596  ptuni  20609
  Copyright terms: Public domain W3C validator