MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptuncnv Structured version   Visualization version   Unicode version

Theorem ptuncnv 20899
Description: Exhibit the converse function of the map  G which joins two product topologies on disjoint index sets. (Contributed by Mario Carneiro, 8-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
ptunhmeo.x  |-  X  = 
U. K
ptunhmeo.y  |-  Y  = 
U. L
ptunhmeo.j  |-  J  =  ( Xt_ `  F
)
ptunhmeo.k  |-  K  =  ( Xt_ `  ( F  |`  A ) )
ptunhmeo.l  |-  L  =  ( Xt_ `  ( F  |`  B ) )
ptunhmeo.g  |-  G  =  ( x  e.  X ,  y  e.  Y  |->  ( x  u.  y
) )
ptunhmeo.c  |-  ( ph  ->  C  e.  V )
ptunhmeo.f  |-  ( ph  ->  F : C --> Top )
ptunhmeo.u  |-  ( ph  ->  C  =  ( A  u.  B ) )
ptunhmeo.i  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
Assertion
Ref Expression
ptuncnv  |-  ( ph  ->  `' G  =  (
z  e.  U. J  |-> 
<. ( z  |`  A ) ,  ( z  |`  B ) >. )
)
Distinct variable groups:    x, y,
z, A    x, B, y, z    z, G    ph, x, y, z    x, C, y, z    x, F, y, z    x, J, y, z    x, K, y, z    x, L, y, z    z, V    x, X, y, z    x, Y, y, z
Allowed substitution hints:    G( x, y)    V( x, y)

Proof of Theorem ptuncnv
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptunhmeo.g . . . 4  |-  G  =  ( x  e.  X ,  y  e.  Y  |->  ( x  u.  y
) )
2 vex 3034 . . . . . . 7  |-  x  e. 
_V
3 vex 3034 . . . . . . 7  |-  y  e. 
_V
42, 3op1std 6822 . . . . . 6  |-  ( w  =  <. x ,  y
>.  ->  ( 1st `  w
)  =  x )
52, 3op2ndd 6823 . . . . . 6  |-  ( w  =  <. x ,  y
>.  ->  ( 2nd `  w
)  =  y )
64, 5uneq12d 3580 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  ( ( 1st `  w )  u.  ( 2nd `  w ) )  =  ( x  u.  y ) )
76mpt2mpt 6407 . . . 4  |-  ( w  e.  ( X  X.  Y )  |->  ( ( 1st `  w )  u.  ( 2nd `  w
) ) )  =  ( x  e.  X ,  y  e.  Y  |->  ( x  u.  y
) )
81, 7eqtr4i 2496 . . 3  |-  G  =  ( w  e.  ( X  X.  Y ) 
|->  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) )
9 xp1st 6842 . . . . . . 7  |-  ( w  e.  ( X  X.  Y )  ->  ( 1st `  w )  e.  X )
109adantl 473 . . . . . 6  |-  ( (
ph  /\  w  e.  ( X  X.  Y
) )  ->  ( 1st `  w )  e.  X )
11 ixpeq2 7554 . . . . . . . . . 10  |-  ( A. k  e.  A  U. ( ( F  |`  A ) `  k
)  =  U. ( F `  k )  -> 
X_ k  e.  A  U. ( ( F  |`  A ) `  k
)  =  X_ k  e.  A  U. ( F `  k )
)
12 fvres 5893 . . . . . . . . . . 11  |-  ( k  e.  A  ->  (
( F  |`  A ) `
 k )  =  ( F `  k
) )
1312unieqd 4200 . . . . . . . . . 10  |-  ( k  e.  A  ->  U. (
( F  |`  A ) `
 k )  = 
U. ( F `  k ) )
1411, 13mprg 2770 . . . . . . . . 9  |-  X_ k  e.  A  U. (
( F  |`  A ) `
 k )  = 
X_ k  e.  A  U. ( F `  k
)
15 ptunhmeo.c . . . . . . . . . . 11  |-  ( ph  ->  C  e.  V )
16 ssun1 3588 . . . . . . . . . . . 12  |-  A  C_  ( A  u.  B
)
17 ptunhmeo.u . . . . . . . . . . . 12  |-  ( ph  ->  C  =  ( A  u.  B ) )
1816, 17syl5sseqr 3467 . . . . . . . . . . 11  |-  ( ph  ->  A  C_  C )
1915, 18ssexd 4543 . . . . . . . . . 10  |-  ( ph  ->  A  e.  _V )
20 ptunhmeo.f . . . . . . . . . . 11  |-  ( ph  ->  F : C --> Top )
2120, 18fssresd 5762 . . . . . . . . . 10  |-  ( ph  ->  ( F  |`  A ) : A --> Top )
22 ptunhmeo.k . . . . . . . . . . 11  |-  K  =  ( Xt_ `  ( F  |`  A ) )
2322ptuni 20686 . . . . . . . . . 10  |-  ( ( A  e.  _V  /\  ( F  |`  A ) : A --> Top )  -> 
X_ k  e.  A  U. ( ( F  |`  A ) `  k
)  =  U. K
)
2419, 21, 23syl2anc 673 . . . . . . . . 9  |-  ( ph  -> 
X_ k  e.  A  U. ( ( F  |`  A ) `  k
)  =  U. K
)
2514, 24syl5eqr 2519 . . . . . . . 8  |-  ( ph  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. K
)
26 ptunhmeo.x . . . . . . . 8  |-  X  = 
U. K
2725, 26syl6eqr 2523 . . . . . . 7  |-  ( ph  -> 
X_ k  e.  A  U. ( F `  k
)  =  X )
2827adantr 472 . . . . . 6  |-  ( (
ph  /\  w  e.  ( X  X.  Y
) )  ->  X_ k  e.  A  U. ( F `  k )  =  X )
2910, 28eleqtrrd 2552 . . . . 5  |-  ( (
ph  /\  w  e.  ( X  X.  Y
) )  ->  ( 1st `  w )  e.  X_ k  e.  A  U. ( F `  k
) )
30 xp2nd 6843 . . . . . . 7  |-  ( w  e.  ( X  X.  Y )  ->  ( 2nd `  w )  e.  Y )
3130adantl 473 . . . . . 6  |-  ( (
ph  /\  w  e.  ( X  X.  Y
) )  ->  ( 2nd `  w )  e.  Y )
3217eqcomd 2477 . . . . . . . . . 10  |-  ( ph  ->  ( A  u.  B
)  =  C )
33 ptunhmeo.i . . . . . . . . . . 11  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
34 uneqdifeq 3847 . . . . . . . . . . 11  |-  ( ( A  C_  C  /\  ( A  i^i  B )  =  (/) )  ->  (
( A  u.  B
)  =  C  <->  ( C  \  A )  =  B ) )
3518, 33, 34syl2anc 673 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  u.  B )  =  C  <-> 
( C  \  A
)  =  B ) )
3632, 35mpbid 215 . . . . . . . . 9  |-  ( ph  ->  ( C  \  A
)  =  B )
3736ixpeq1d 7552 . . . . . . . 8  |-  ( ph  -> 
X_ k  e.  ( C  \  A ) U. ( F `  k )  =  X_ k  e.  B  U. ( F `  k ) )
38 ixpeq2 7554 . . . . . . . . . . 11  |-  ( A. k  e.  B  U. ( ( F  |`  B ) `  k
)  =  U. ( F `  k )  -> 
X_ k  e.  B  U. ( ( F  |`  B ) `  k
)  =  X_ k  e.  B  U. ( F `  k )
)
39 fvres 5893 . . . . . . . . . . . 12  |-  ( k  e.  B  ->  (
( F  |`  B ) `
 k )  =  ( F `  k
) )
4039unieqd 4200 . . . . . . . . . . 11  |-  ( k  e.  B  ->  U. (
( F  |`  B ) `
 k )  = 
U. ( F `  k ) )
4138, 40mprg 2770 . . . . . . . . . 10  |-  X_ k  e.  B  U. (
( F  |`  B ) `
 k )  = 
X_ k  e.  B  U. ( F `  k
)
42 ssun2 3589 . . . . . . . . . . . . 13  |-  B  C_  ( A  u.  B
)
4342, 17syl5sseqr 3467 . . . . . . . . . . . 12  |-  ( ph  ->  B  C_  C )
4415, 43ssexd 4543 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  _V )
4520, 43fssresd 5762 . . . . . . . . . . 11  |-  ( ph  ->  ( F  |`  B ) : B --> Top )
46 ptunhmeo.l . . . . . . . . . . . 12  |-  L  =  ( Xt_ `  ( F  |`  B ) )
4746ptuni 20686 . . . . . . . . . . 11  |-  ( ( B  e.  _V  /\  ( F  |`  B ) : B --> Top )  -> 
X_ k  e.  B  U. ( ( F  |`  B ) `  k
)  =  U. L
)
4844, 45, 47syl2anc 673 . . . . . . . . . 10  |-  ( ph  -> 
X_ k  e.  B  U. ( ( F  |`  B ) `  k
)  =  U. L
)
4941, 48syl5eqr 2519 . . . . . . . . 9  |-  ( ph  -> 
X_ k  e.  B  U. ( F `  k
)  =  U. L
)
50 ptunhmeo.y . . . . . . . . 9  |-  Y  = 
U. L
5149, 50syl6eqr 2523 . . . . . . . 8  |-  ( ph  -> 
X_ k  e.  B  U. ( F `  k
)  =  Y )
5237, 51eqtrd 2505 . . . . . . 7  |-  ( ph  -> 
X_ k  e.  ( C  \  A ) U. ( F `  k )  =  Y )
5352adantr 472 . . . . . 6  |-  ( (
ph  /\  w  e.  ( X  X.  Y
) )  ->  X_ k  e.  ( C  \  A
) U. ( F `
 k )  =  Y )
5431, 53eleqtrrd 2552 . . . . 5  |-  ( (
ph  /\  w  e.  ( X  X.  Y
) )  ->  ( 2nd `  w )  e.  X_ k  e.  ( C  \  A ) U. ( F `  k ) )
5518adantr 472 . . . . 5  |-  ( (
ph  /\  w  e.  ( X  X.  Y
) )  ->  A  C_  C )
56 undifixp 7576 . . . . 5  |-  ( ( ( 1st `  w
)  e.  X_ k  e.  A  U. ( F `  k )  /\  ( 2nd `  w
)  e.  X_ k  e.  ( C  \  A
) U. ( F `
 k )  /\  A  C_  C )  -> 
( ( 1st `  w
)  u.  ( 2nd `  w ) )  e.  X_ k  e.  C  U. ( F `  k
) )
5729, 54, 55, 56syl3anc 1292 . . . 4  |-  ( (
ph  /\  w  e.  ( X  X.  Y
) )  ->  (
( 1st `  w
)  u.  ( 2nd `  w ) )  e.  X_ k  e.  C  U. ( F `  k
) )
58 ptunhmeo.j . . . . . . 7  |-  J  =  ( Xt_ `  F
)
5958ptuni 20686 . . . . . 6  |-  ( ( C  e.  V  /\  F : C --> Top )  -> 
X_ k  e.  C  U. ( F `  k
)  =  U. J
)
6015, 20, 59syl2anc 673 . . . . 5  |-  ( ph  -> 
X_ k  e.  C  U. ( F `  k
)  =  U. J
)
6160adantr 472 . . . 4  |-  ( (
ph  /\  w  e.  ( X  X.  Y
) )  ->  X_ k  e.  C  U. ( F `  k )  =  U. J )
6257, 61eleqtrd 2551 . . 3  |-  ( (
ph  /\  w  e.  ( X  X.  Y
) )  ->  (
( 1st `  w
)  u.  ( 2nd `  w ) )  e. 
U. J )
6318adantr 472 . . . . . 6  |-  ( (
ph  /\  z  e.  U. J )  ->  A  C_  C )
6460eleq2d 2534 . . . . . . 7  |-  ( ph  ->  ( z  e.  X_ k  e.  C  U. ( F `  k )  <-> 
z  e.  U. J
) )
6564biimpar 493 . . . . . 6  |-  ( (
ph  /\  z  e.  U. J )  ->  z  e.  X_ k  e.  C  U. ( F `  k
) )
66 resixp 7575 . . . . . 6  |-  ( ( A  C_  C  /\  z  e.  X_ k  e.  C  U. ( F `
 k ) )  ->  ( z  |`  A )  e.  X_ k  e.  A  U. ( F `  k ) )
6763, 65, 66syl2anc 673 . . . . 5  |-  ( (
ph  /\  z  e.  U. J )  ->  (
z  |`  A )  e.  X_ k  e.  A  U. ( F `  k
) )
6827adantr 472 . . . . 5  |-  ( (
ph  /\  z  e.  U. J )  ->  X_ k  e.  A  U. ( F `  k )  =  X )
6967, 68eleqtrd 2551 . . . 4  |-  ( (
ph  /\  z  e.  U. J )  ->  (
z  |`  A )  e.  X )
7043adantr 472 . . . . . 6  |-  ( (
ph  /\  z  e.  U. J )  ->  B  C_  C )
71 resixp 7575 . . . . . 6  |-  ( ( B  C_  C  /\  z  e.  X_ k  e.  C  U. ( F `
 k ) )  ->  ( z  |`  B )  e.  X_ k  e.  B  U. ( F `  k ) )
7270, 65, 71syl2anc 673 . . . . 5  |-  ( (
ph  /\  z  e.  U. J )  ->  (
z  |`  B )  e.  X_ k  e.  B  U. ( F `  k
) )
7351adantr 472 . . . . 5  |-  ( (
ph  /\  z  e.  U. J )  ->  X_ k  e.  B  U. ( F `  k )  =  Y )
7472, 73eleqtrd 2551 . . . 4  |-  ( (
ph  /\  z  e.  U. J )  ->  (
z  |`  B )  e.  Y )
75 opelxpi 4871 . . . 4  |-  ( ( ( z  |`  A )  e.  X  /\  (
z  |`  B )  e.  Y )  ->  <. (
z  |`  A ) ,  ( z  |`  B )
>.  e.  ( X  X.  Y ) )
7669, 74, 75syl2anc 673 . . 3  |-  ( (
ph  /\  z  e.  U. J )  ->  <. (
z  |`  A ) ,  ( z  |`  B )
>.  e.  ( X  X.  Y ) )
77 eqop 6852 . . . . 5  |-  ( w  e.  ( X  X.  Y )  ->  (
w  =  <. (
z  |`  A ) ,  ( z  |`  B )
>. 
<->  ( ( 1st `  w
)  =  ( z  |`  A )  /\  ( 2nd `  w )  =  ( z  |`  B ) ) ) )
7877ad2antrl 742 . . . 4  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
( w  =  <. ( z  |`  A ) ,  ( z  |`  B ) >.  <->  ( ( 1st `  w )  =  ( z  |`  A )  /\  ( 2nd `  w
)  =  ( z  |`  B ) ) ) )
7965adantrl 730 . . . . . . . . 9  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
z  e.  X_ k  e.  C  U. ( F `  k )
)
80 ixpfn 7546 . . . . . . . . 9  |-  ( z  e.  X_ k  e.  C  U. ( F `  k
)  ->  z  Fn  C )
81 fnresdm 5695 . . . . . . . . 9  |-  ( z  Fn  C  ->  (
z  |`  C )  =  z )
8279, 80, 813syl 18 . . . . . . . 8  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
( z  |`  C )  =  z )
8317reseq2d 5111 . . . . . . . . 9  |-  ( ph  ->  ( z  |`  C )  =  ( z  |`  ( A  u.  B
) ) )
8483adantr 472 . . . . . . . 8  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
( z  |`  C )  =  ( z  |`  ( A  u.  B
) ) )
8582, 84eqtr3d 2507 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
z  =  ( z  |`  ( A  u.  B
) ) )
86 resundi 5124 . . . . . . 7  |-  ( z  |`  ( A  u.  B
) )  =  ( ( z  |`  A )  u.  ( z  |`  B ) )
8785, 86syl6eq 2521 . . . . . 6  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
z  =  ( ( z  |`  A )  u.  ( z  |`  B ) ) )
88 uneq12 3574 . . . . . . 7  |-  ( ( ( 1st `  w
)  =  ( z  |`  A )  /\  ( 2nd `  w )  =  ( z  |`  B ) )  ->  ( ( 1st `  w )  u.  ( 2nd `  w
) )  =  ( ( z  |`  A )  u.  ( z  |`  B ) ) )
8988eqeq2d 2481 . . . . . 6  |-  ( ( ( 1st `  w
)  =  ( z  |`  A )  /\  ( 2nd `  w )  =  ( z  |`  B ) )  ->  ( z  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  <-> 
z  =  ( ( z  |`  A )  u.  ( z  |`  B ) ) ) )
9087, 89syl5ibrcom 230 . . . . 5  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
( ( ( 1st `  w )  =  ( z  |`  A )  /\  ( 2nd `  w
)  =  ( z  |`  B ) )  -> 
z  =  ( ( 1st `  w )  u.  ( 2nd `  w
) ) ) )
91 ixpfn 7546 . . . . . . . . . . . 12  |-  ( ( 1st `  w )  e.  X_ k  e.  A  U. ( F `  k
)  ->  ( 1st `  w )  Fn  A
)
9229, 91syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  ( X  X.  Y
) )  ->  ( 1st `  w )  Fn  A )
9392adantrr 731 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
( 1st `  w
)  Fn  A )
94 dffn2 5741 . . . . . . . . . 10  |-  ( ( 1st `  w )  Fn  A  <->  ( 1st `  w ) : A --> _V )
9593, 94sylib 201 . . . . . . . . 9  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
( 1st `  w
) : A --> _V )
9651adantr 472 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  ( X  X.  Y
) )  ->  X_ k  e.  B  U. ( F `  k )  =  Y )
9731, 96eleqtrrd 2552 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  ( X  X.  Y
) )  ->  ( 2nd `  w )  e.  X_ k  e.  B  U. ( F `  k
) )
98 ixpfn 7546 . . . . . . . . . . . 12  |-  ( ( 2nd `  w )  e.  X_ k  e.  B  U. ( F `  k
)  ->  ( 2nd `  w )  Fn  B
)
9997, 98syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  ( X  X.  Y
) )  ->  ( 2nd `  w )  Fn  B )
10099adantrr 731 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
( 2nd `  w
)  Fn  B )
101 dffn2 5741 . . . . . . . . . 10  |-  ( ( 2nd `  w )  Fn  B  <->  ( 2nd `  w ) : B --> _V )
102100, 101sylib 201 . . . . . . . . 9  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
( 2nd `  w
) : B --> _V )
103 res0 5115 . . . . . . . . . . 11  |-  ( ( 1st `  w )  |`  (/) )  =  (/)
104 res0 5115 . . . . . . . . . . 11  |-  ( ( 2nd `  w )  |`  (/) )  =  (/)
105103, 104eqtr4i 2496 . . . . . . . . . 10  |-  ( ( 1st `  w )  |`  (/) )  =  ( ( 2nd `  w
)  |`  (/) )
10633adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
( A  i^i  B
)  =  (/) )
107106reseq2d 5111 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
( ( 1st `  w
)  |`  ( A  i^i  B ) )  =  ( ( 1st `  w
)  |`  (/) ) )
108106reseq2d 5111 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
( ( 2nd `  w
)  |`  ( A  i^i  B ) )  =  ( ( 2nd `  w
)  |`  (/) ) )
109105, 107, 1083eqtr4a 2531 . . . . . . . . 9  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
( ( 1st `  w
)  |`  ( A  i^i  B ) )  =  ( ( 2nd `  w
)  |`  ( A  i^i  B ) ) )
110 fresaunres1 5768 . . . . . . . . 9  |-  ( ( ( 1st `  w
) : A --> _V  /\  ( 2nd `  w ) : B --> _V  /\  ( ( 1st `  w
)  |`  ( A  i^i  B ) )  =  ( ( 2nd `  w
)  |`  ( A  i^i  B ) ) )  -> 
( ( ( 1st `  w )  u.  ( 2nd `  w ) )  |`  A )  =  ( 1st `  w ) )
11195, 102, 109, 110syl3anc 1292 . . . . . . . 8  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
( ( ( 1st `  w )  u.  ( 2nd `  w ) )  |`  A )  =  ( 1st `  w ) )
112111eqcomd 2477 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
( 1st `  w
)  =  ( ( ( 1st `  w
)  u.  ( 2nd `  w ) )  |`  A ) )
113 fresaunres2 5767 . . . . . . . . 9  |-  ( ( ( 1st `  w
) : A --> _V  /\  ( 2nd `  w ) : B --> _V  /\  ( ( 1st `  w
)  |`  ( A  i^i  B ) )  =  ( ( 2nd `  w
)  |`  ( A  i^i  B ) ) )  -> 
( ( ( 1st `  w )  u.  ( 2nd `  w ) )  |`  B )  =  ( 2nd `  w ) )
11495, 102, 109, 113syl3anc 1292 . . . . . . . 8  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
( ( ( 1st `  w )  u.  ( 2nd `  w ) )  |`  B )  =  ( 2nd `  w ) )
115114eqcomd 2477 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
( 2nd `  w
)  =  ( ( ( 1st `  w
)  u.  ( 2nd `  w ) )  |`  B ) )
116112, 115jca 541 . . . . . 6  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
( ( 1st `  w
)  =  ( ( ( 1st `  w
)  u.  ( 2nd `  w ) )  |`  A )  /\  ( 2nd `  w )  =  ( ( ( 1st `  w )  u.  ( 2nd `  w ) )  |`  B ) ) )
117 reseq1 5105 . . . . . . . 8  |-  ( z  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  ->  ( z  |`  A )  =  ( ( ( 1st `  w
)  u.  ( 2nd `  w ) )  |`  A ) )
118117eqeq2d 2481 . . . . . . 7  |-  ( z  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  ->  ( ( 1st `  w )  =  ( z  |`  A )  <->  ( 1st `  w )  =  ( ( ( 1st `  w )  u.  ( 2nd `  w
) )  |`  A ) ) )
119 reseq1 5105 . . . . . . . 8  |-  ( z  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  ->  ( z  |`  B )  =  ( ( ( 1st `  w
)  u.  ( 2nd `  w ) )  |`  B ) )
120119eqeq2d 2481 . . . . . . 7  |-  ( z  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  ->  ( ( 2nd `  w )  =  ( z  |`  B )  <->  ( 2nd `  w )  =  ( ( ( 1st `  w )  u.  ( 2nd `  w
) )  |`  B ) ) )
121118, 120anbi12d 725 . . . . . 6  |-  ( z  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  ->  ( ( ( 1st `  w )  =  ( z  |`  A )  /\  ( 2nd `  w )  =  ( z  |`  B ) )  <->  ( ( 1st `  w )  =  ( ( ( 1st `  w
)  u.  ( 2nd `  w ) )  |`  A )  /\  ( 2nd `  w )  =  ( ( ( 1st `  w )  u.  ( 2nd `  w ) )  |`  B ) ) ) )
122116, 121syl5ibrcom 230 . . . . 5  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
( z  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  -> 
( ( 1st `  w
)  =  ( z  |`  A )  /\  ( 2nd `  w )  =  ( z  |`  B ) ) ) )
12390, 122impbid 195 . . . 4  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
( ( ( 1st `  w )  =  ( z  |`  A )  /\  ( 2nd `  w
)  =  ( z  |`  B ) )  <->  z  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) ) )
12478, 123bitrd 261 . . 3  |-  ( (
ph  /\  ( w  e.  ( X  X.  Y
)  /\  z  e.  U. J ) )  -> 
( w  =  <. ( z  |`  A ) ,  ( z  |`  B ) >.  <->  z  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) ) )
1258, 62, 76, 124f1ocnv2d 6539 . 2  |-  ( ph  ->  ( G : ( X  X.  Y ) -1-1-onto-> U. J  /\  `' G  =  ( z  e. 
U. J  |->  <. (
z  |`  A ) ,  ( z  |`  B )
>. ) ) )
126125simprd 470 1  |-  ( ph  ->  `' G  =  (
z  e.  U. J  |-> 
<. ( z  |`  A ) ,  ( z  |`  B ) >. )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   _Vcvv 3031    \ cdif 3387    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722   <.cop 3965   U.cuni 4190    |-> cmpt 4454    X. cxp 4837   `'ccnv 4838    |` cres 4841    Fn wfn 5584   -->wf 5585   -1-1-onto->wf1o 5588   ` cfv 5589    |-> cmpt2 6310   1stc1st 6810   2ndc2nd 6811   X_cixp 7540   Xt_cpt 15415   Topctop 19994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-ixp 7541  df-en 7588  df-fin 7591  df-fi 7943  df-topgen 15420  df-pt 15421  df-top 19998  df-bases 19999
This theorem is referenced by:  ptunhmeo  20900
  Copyright terms: Public domain W3C validator