MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptrescn Structured version   Unicode version

Theorem ptrescn 20591
Description: Restriction is a continuous function on product topologies. (Contributed by Mario Carneiro, 7-Feb-2015.)
Hypotheses
Ref Expression
ptrescn.1  |-  X  = 
U. J
ptrescn.2  |-  J  =  ( Xt_ `  F
)
ptrescn.3  |-  K  =  ( Xt_ `  ( F  |`  B ) )
Assertion
Ref Expression
ptrescn  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( x  e.  X  |->  ( x  |`  B ) )  e.  ( J  Cn  K ) )
Distinct variable groups:    x, A    x, B    x, F    x, K    x, V    x, X
Allowed substitution hint:    J( x)

Proof of Theorem ptrescn
Dummy variables  u  k  v  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1010 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  x  e.  X )  ->  B  C_  A )
2 ptrescn.2 . . . . . . . . . 10  |-  J  =  ( Xt_ `  F
)
32ptuni 20546 . . . . . . . . 9  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. J
)
433adant3 1025 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  X_ k  e.  A  U. ( F `  k )  =  U. J )
5 ptrescn.1 . . . . . . . 8  |-  X  = 
U. J
64, 5syl6eqr 2479 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  X_ k  e.  A  U. ( F `  k )  =  X )
76eleq2d 2490 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( x  e.  X_ k  e.  A  U. ( F `  k )  <-> 
x  e.  X ) )
87biimpar 487 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  x  e.  X )  ->  x  e.  X_ k  e.  A  U. ( F `  k )
)
9 resixp 7556 . . . . 5  |-  ( ( B  C_  A  /\  x  e.  X_ k  e.  A  U. ( F `
 k ) )  ->  ( x  |`  B )  e.  X_ k  e.  B  U. ( F `  k ) )
101, 8, 9syl2anc 665 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  x  e.  X )  ->  ( x  |`  B )  e.  X_ k  e.  B  U. ( F `  k
) )
11 ixpeq2 7535 . . . . . . 7  |-  ( A. k  e.  B  U. ( ( F  |`  B ) `  k
)  =  U. ( F `  k )  -> 
X_ k  e.  B  U. ( ( F  |`  B ) `  k
)  =  X_ k  e.  B  U. ( F `  k )
)
12 fvres 5886 . . . . . . . 8  |-  ( k  e.  B  ->  (
( F  |`  B ) `
 k )  =  ( F `  k
) )
1312unieqd 4223 . . . . . . 7  |-  ( k  e.  B  ->  U. (
( F  |`  B ) `
 k )  = 
U. ( F `  k ) )
1411, 13mprg 2786 . . . . . 6  |-  X_ k  e.  B  U. (
( F  |`  B ) `
 k )  = 
X_ k  e.  B  U. ( F `  k
)
15 ssexg 4562 . . . . . . . . 9  |-  ( ( B  C_  A  /\  A  e.  V )  ->  B  e.  _V )
1615ancoms 454 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  C_  A )  ->  B  e.  _V )
17163adant2 1024 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  B  e.  _V )
18 fssres 5757 . . . . . . . 8  |-  ( ( F : A --> Top  /\  B  C_  A )  -> 
( F  |`  B ) : B --> Top )
19183adant1 1023 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( F  |`  B ) : B --> Top )
20 ptrescn.3 . . . . . . . 8  |-  K  =  ( Xt_ `  ( F  |`  B ) )
2120ptuni 20546 . . . . . . 7  |-  ( ( B  e.  _V  /\  ( F  |`  B ) : B --> Top )  -> 
X_ k  e.  B  U. ( ( F  |`  B ) `  k
)  =  U. K
)
2217, 19, 21syl2anc 665 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  X_ k  e.  B  U. ( ( F  |`  B ) `  k
)  =  U. K
)
2314, 22syl5eqr 2475 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  X_ k  e.  B  U. ( F `  k )  =  U. K )
2423adantr 466 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  x  e.  X )  -> 
X_ k  e.  B  U. ( F `  k
)  =  U. K
)
2510, 24eleqtrd 2510 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  x  e.  X )  ->  ( x  |`  B )  e.  U. K )
26 eqid 2420 . . 3  |-  ( x  e.  X  |->  ( x  |`  B ) )  =  ( x  e.  X  |->  ( x  |`  B ) )
2725, 26fmptd 6052 . 2  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( x  e.  X  |->  ( x  |`  B ) ) : X --> U. K
)
28 fimacnv 6018 . . . . . . 7  |-  ( ( x  e.  X  |->  ( x  |`  B )
) : X --> U. K  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) " U. K )  =  X )
2927, 28syl 17 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( `' ( x  e.  X  |->  ( x  |`  B ) ) " U. K )  =  X )
30 pttop 20534 . . . . . . . . 9  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( Xt_ `  F
)  e.  Top )
312, 30syl5eqel 2512 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  J  e.  Top )
32313adant3 1025 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  J  e.  Top )
335topopn 19873 . . . . . . 7  |-  ( J  e.  Top  ->  X  e.  J )
3432, 33syl 17 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  X  e.  J )
3529, 34eqeltrd 2508 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( `' ( x  e.  X  |->  ( x  |`  B ) ) " U. K )  e.  J
)
36 elsni 4018 . . . . . . 7  |-  ( v  e.  { U. K }  ->  v  =  U. K )
3736imaeq2d 5179 . . . . . 6  |-  ( v  e.  { U. K }  ->  ( `' ( x  e.  X  |->  ( x  |`  B )
) " v )  =  ( `' ( x  e.  X  |->  ( x  |`  B )
) " U. K
) )
3837eleq1d 2489 . . . . 5  |-  ( v  e.  { U. K }  ->  ( ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  e.  J  <->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) " U. K
)  e.  J ) )
3935, 38syl5ibrcom 225 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( v  e.  { U. K }  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
) )
4039ralrimiv 2835 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  A. v  e.  { U. K }  ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  e.  J )
41 imaco 5351 . . . . . . . . 9  |-  ( ( `' ( x  e.  X  |->  ( x  |`  B ) )  o.  `' ( z  e. 
U. K  |->  ( z `
 k ) ) ) " u )  =  ( `' ( x  e.  X  |->  ( x  |`  B )
) " ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) )
42 cnvco 5031 . . . . . . . . . . 11  |-  `' ( ( z  e.  U. K  |->  ( z `  k ) )  o.  ( x  e.  X  |->  ( x  |`  B ) ) )  =  ( `' ( x  e.  X  |->  ( x  |`  B ) )  o.  `' ( z  e. 
U. K  |->  ( z `
 k ) ) )
4325adantlr 719 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top  /\  B  C_  A )  /\  (
k  e.  B  /\  u  e.  ( F `  k ) ) )  /\  x  e.  X
)  ->  ( x  |`  B )  e.  U. K )
44 eqidd 2421 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
x  e.  X  |->  ( x  |`  B )
)  =  ( x  e.  X  |->  ( x  |`  B ) ) )
45 eqidd 2421 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
z  e.  U. K  |->  ( z `  k
) )  =  ( z  e.  U. K  |->  ( z `  k
) ) )
46 fveq1 5871 . . . . . . . . . . . . . 14  |-  ( z  =  ( x  |`  B )  ->  (
z `  k )  =  ( ( x  |`  B ) `  k
) )
4743, 44, 45, 46fmptco 6062 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
( z  e.  U. K  |->  ( z `  k ) )  o.  ( x  e.  X  |->  ( x  |`  B ) ) )  =  ( x  e.  X  |->  ( ( x  |`  B ) `
 k ) ) )
48 fvres 5886 . . . . . . . . . . . . . . 15  |-  ( k  e.  B  ->  (
( x  |`  B ) `
 k )  =  ( x `  k
) )
4948ad2antrl 732 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
( x  |`  B ) `
 k )  =  ( x `  k
) )
5049mpteq2dv 4504 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
x  e.  X  |->  ( ( x  |`  B ) `
 k ) )  =  ( x  e.  X  |->  ( x `  k ) ) )
5147, 50eqtrd 2461 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
( z  e.  U. K  |->  ( z `  k ) )  o.  ( x  e.  X  |->  ( x  |`  B ) ) )  =  ( x  e.  X  |->  ( x `  k ) ) )
5251cnveqd 5021 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  `' ( ( z  e. 
U. K  |->  ( z `
 k ) )  o.  ( x  e.  X  |->  ( x  |`  B ) ) )  =  `' ( x  e.  X  |->  ( x `
 k ) ) )
5342, 52syl5eqr 2475 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) )  o.  `' ( z  e. 
U. K  |->  ( z `
 k ) ) )  =  `' ( x  e.  X  |->  ( x `  k ) ) )
5453imaeq1d 5178 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
( `' ( x  e.  X  |->  ( x  |`  B ) )  o.  `' ( z  e. 
U. K  |->  ( z `
 k ) ) ) " u )  =  ( `' ( x  e.  X  |->  ( x `  k ) ) " u ) )
5541, 54syl5eqr 2475 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) )  =  ( `' ( x  e.  X  |->  ( x `  k
) ) " u
) )
56 simpl1 1008 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  A  e.  V )
57 simpl2 1009 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  F : A --> Top )
58 simpl3 1010 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  B  C_  A )
59 simprl 762 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  k  e.  B )
6058, 59sseldd 3462 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  k  e.  A )
615, 2ptpjcn 20563 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  F : A --> Top  /\  k  e.  A )  ->  ( x  e.  X  |->  ( x `  k
) )  e.  ( J  Cn  ( F `
 k ) ) )
6256, 57, 60, 61syl3anc 1264 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
x  e.  X  |->  ( x `  k ) )  e.  ( J  Cn  ( F `  k ) ) )
63 simprr 764 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  u  e.  ( F `  k
) )
64 cnima 20218 . . . . . . . . 9  |-  ( ( ( x  e.  X  |->  ( x `  k
) )  e.  ( J  Cn  ( F `
 k ) )  /\  u  e.  ( F `  k ) )  ->  ( `' ( x  e.  X  |->  ( x `  k
) ) " u
)  e.  J )
6562, 63, 64syl2anc 665 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  ( `' ( x  e.  X  |->  ( x `  k ) ) "
u )  e.  J
)
6655, 65eqeltrd 2508 . . . . . . 7  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) )  e.  J )
67 imaeq2 5175 . . . . . . . 8  |-  ( v  =  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
)  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  =  ( `' ( x  e.  X  |->  ( x  |`  B )
) " ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) ) )
6867eleq1d 2489 . . . . . . 7  |-  ( v  =  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
)  ->  ( ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J  <->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) )  e.  J ) )
6966, 68syl5ibrcom 225 . . . . . 6  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
v  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u )  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
) )
7069rexlimdvva 2922 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( E. k  e.  B  E. u  e.  ( F `  k
) v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u )  -> 
( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
) )
7170alrimiv 1763 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  A. v ( E. k  e.  B  E. u  e.  ( F `  k
) v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u )  -> 
( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
) )
72 eqid 2420 . . . . . . 7  |-  ( k  e.  B ,  u  e.  ( ( F  |`  B ) `  k
)  |->  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) )  =  ( k  e.  B ,  u  e.  ( ( F  |`  B ) `  k )  |->  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) )
7372rnmpt2 6411 . . . . . 6  |-  ran  (
k  e.  B ,  u  e.  ( ( F  |`  B ) `  k )  |->  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) )  =  { y  |  E. k  e.  B  E. u  e.  ( ( F  |`  B ) `  k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) }
7473raleqi 3027 . . . . 5  |-  ( A. v  e.  ran  ( k  e.  B ,  u  e.  ( ( F  |`  B ) `  k
)  |->  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) ) ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  e.  J  <->  A. v  e.  { y  |  E. k  e.  B  E. u  e.  ( ( F  |`  B ) `  k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) }  ( `' ( x  e.  X  |->  ( x  |`  B )
) " v )  e.  J )
7512rexeqdv 3030 . . . . . . . 8  |-  ( k  e.  B  ->  ( E. u  e.  (
( F  |`  B ) `
 k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
)  <->  E. u  e.  ( F `  k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) ) )
76 eqeq1 2424 . . . . . . . . 9  |-  ( y  =  v  ->  (
y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u )  <->  v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) )
7776rexbidv 2937 . . . . . . . 8  |-  ( y  =  v  ->  ( E. u  e.  ( F `  k )
y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u )  <->  E. u  e.  ( F `  k
) v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) )
7875, 77sylan9bbr 705 . . . . . . 7  |-  ( ( y  =  v  /\  k  e.  B )  ->  ( E. u  e.  ( ( F  |`  B ) `  k
) y  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u )  <->  E. u  e.  ( F `  k
) v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) )
7978rexbidva 2934 . . . . . 6  |-  ( y  =  v  ->  ( E. k  e.  B  E. u  e.  (
( F  |`  B ) `
 k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
)  <->  E. k  e.  B  E. u  e.  ( F `  k )
v  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) ) )
8079ralab 3229 . . . . 5  |-  ( A. v  e.  { y  |  E. k  e.  B  E. u  e.  (
( F  |`  B ) `
 k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) }  ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  e.  J  <->  A. v
( E. k  e.  B  E. u  e.  ( F `  k
) v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u )  -> 
( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
) )
8174, 80bitri 252 . . . 4  |-  ( A. v  e.  ran  ( k  e.  B ,  u  e.  ( ( F  |`  B ) `  k
)  |->  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) ) ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  e.  J  <->  A. v
( E. k  e.  B  E. u  e.  ( F `  k
) v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u )  -> 
( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
) )
8271, 81sylibr 215 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  A. v  e.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
)
83 ralunb 3644 . . 3  |-  ( A. v  e.  ( { U. K }  u.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) ) ( `' ( x  e.  X  |->  ( x  |`  B )
) " v )  e.  J  <->  ( A. v  e.  { U. K }  ( `' ( x  e.  X  |->  ( x  |`  B )
) " v )  e.  J  /\  A. v  e.  ran  ( k  e.  B ,  u  e.  ( ( F  |`  B ) `  k
)  |->  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) ) ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  e.  J ) )
8440, 82, 83sylanbrc 668 . 2  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  A. v  e.  ( { U. K }  u.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) ) ( `' ( x  e.  X  |->  ( x  |`  B )
) " v )  e.  J )
855toptopon 19885 . . . 4  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
8632, 85sylib 199 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  J  e.  (TopOn `  X
) )
87 snex 4654 . . . 4  |-  { U. K }  e.  _V
88 fvex 5882 . . . . . . . 8  |-  ( ( F  |`  B ) `  k )  e.  _V
8988abrexex 6772 . . . . . . 7  |-  { y  |  E. u  e.  ( ( F  |`  B ) `  k
) y  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) }  e.  _V
9089rgenw 2784 . . . . . 6  |-  A. k  e.  B  { y  |  E. u  e.  ( ( F  |`  B ) `
 k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) }  e.  _V
91 abrexex2g 6775 . . . . . 6  |-  ( ( B  e.  _V  /\  A. k  e.  B  {
y  |  E. u  e.  ( ( F  |`  B ) `  k
) y  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) }  e.  _V )  ->  { y  |  E. k  e.  B  E. u  e.  ( ( F  |`  B ) `  k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) }  e.  _V )
9217, 90, 91sylancl 666 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  { y  |  E. k  e.  B  E. u  e.  ( ( F  |`  B ) `  k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) }  e.  _V )
9373, 92syl5eqel 2512 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) )  e.  _V )
94 unexg 6597 . . . 4  |-  ( ( { U. K }  e.  _V  /\  ran  (
k  e.  B ,  u  e.  ( ( F  |`  B ) `  k )  |->  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) )  e. 
_V )  ->  ( { U. K }  u.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) )  e.  _V )
9587, 93, 94sylancr 667 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( { U. K }  u.  ran  ( k  e.  B ,  u  e.  ( ( F  |`  B ) `  k
)  |->  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) ) )  e. 
_V )
96 eqid 2420 . . . . 5  |-  U. K  =  U. K
9720, 96, 72ptval2 20553 . . . 4  |-  ( ( B  e.  _V  /\  ( F  |`  B ) : B --> Top )  ->  K  =  ( topGen `  ( fi `  ( { U. K }  u.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) ) ) ) )
9817, 19, 97syl2anc 665 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  K  =  ( topGen `  ( fi `  ( { U. K }  u.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) ) ) ) )
99 pttop 20534 . . . . . 6  |-  ( ( B  e.  _V  /\  ( F  |`  B ) : B --> Top )  ->  ( Xt_ `  ( F  |`  B ) )  e.  Top )
10017, 19, 99syl2anc 665 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( Xt_ `  ( F  |`  B ) )  e. 
Top )
10120, 100syl5eqel 2512 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  K  e.  Top )
10296toptopon 19885 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
103101, 102sylib 199 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  K  e.  (TopOn `  U. K ) )
10486, 95, 98, 103subbascn 20207 . 2  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( ( x  e.  X  |->  ( x  |`  B ) )  e.  ( J  Cn  K
)  <->  ( ( x  e.  X  |->  ( x  |`  B ) ) : X --> U. K  /\  A. v  e.  ( { U. K }  u.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) ) ( `' ( x  e.  X  |->  ( x  |`  B )
) " v )  e.  J ) ) )
10527, 84, 104mpbir2and 930 1  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( x  e.  X  |->  ( x  |`  B ) )  e.  ( J  Cn  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982   A.wal 1435    = wceq 1437    e. wcel 1867   {cab 2405   A.wral 2773   E.wrex 2774   _Vcvv 3078    u. cun 3431    C_ wss 3433   {csn 3993   U.cuni 4213    |-> cmpt 4475   `'ccnv 4844   ran crn 4846    |` cres 4847   "cima 4848    o. ccom 4849   -->wf 5588   ` cfv 5592  (class class class)co 6296    |-> cmpt2 6298   X_cixp 7521   ficfi 7921   topGenctg 15296   Xt_cpt 15297   Topctop 19854  TopOnctopon 19855    Cn ccn 20177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-reu 2780  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-int 4250  df-iun 4295  df-iin 4296  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-1o 7181  df-oadd 7185  df-er 7362  df-map 7473  df-ixp 7522  df-en 7569  df-dom 7570  df-fin 7572  df-fi 7922  df-topgen 15302  df-pt 15303  df-top 19858  df-bases 19859  df-topon 19860  df-cn 20180
This theorem is referenced by:  ptunhmeo  20760  tmdgsum  21047
  Copyright terms: Public domain W3C validator