MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptopn Structured version   Unicode version

Theorem ptopn 20374
Description: A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptopn.1  |-  ( ph  ->  A  e.  V )
ptopn.2  |-  ( ph  ->  F : A --> Top )
ptopn.3  |-  ( ph  ->  W  e.  Fin )
ptopn.4  |-  ( (
ph  /\  k  e.  A )  ->  S  e.  ( F `  k
) )
ptopn.5  |-  ( (
ph  /\  k  e.  ( A  \  W ) )  ->  S  =  U. ( F `  k
) )
Assertion
Ref Expression
ptopn  |-  ( ph  -> 
X_ k  e.  A  S  e.  ( Xt_ `  F ) )
Distinct variable groups:    A, k    k, F    k, V    ph, k    k, W
Allowed substitution hint:    S( k)

Proof of Theorem ptopn
Dummy variables  g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptopn.1 . . . . 5  |-  ( ph  ->  A  e.  V )
2 ptopn.2 . . . . 5  |-  ( ph  ->  F : A --> Top )
3 eqid 2402 . . . . . 6  |-  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
43ptbas 20370 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }  e.  TopBases )
51, 2, 4syl2anc 659 . . . 4  |-  ( ph  ->  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }  e.  TopBases )
6 bastg 19757 . . . 4  |-  ( { x  |  E. g
( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e. 
Fin  A. y  e.  ( A  \  z ) ( g `  y
)  =  U. ( F `  y )
)  /\  x  =  X_ y  e.  A  ( g `  y ) ) }  e.  TopBases  ->  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }  C_  ( topGen `  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) } ) )
75, 6syl 17 . . 3  |-  ( ph  ->  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }  C_  ( topGen `  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) } ) )
8 ffn 5713 . . . . 5  |-  ( F : A --> Top  ->  F  Fn  A )
92, 8syl 17 . . . 4  |-  ( ph  ->  F  Fn  A )
103ptval 20361 . . . 4  |-  ( ( A  e.  V  /\  F  Fn  A )  ->  ( Xt_ `  F
)  =  ( topGen `  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) } ) )
111, 9, 10syl2anc 659 . . 3  |-  ( ph  ->  ( Xt_ `  F
)  =  ( topGen `  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) } ) )
127, 11sseqtr4d 3478 . 2  |-  ( ph  ->  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }  C_  ( Xt_ `  F ) )
13 ptopn.3 . . 3  |-  ( ph  ->  W  e.  Fin )
14 ptopn.4 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  S  e.  ( F `  k
) )
15 ptopn.5 . . 3  |-  ( (
ph  /\  k  e.  ( A  \  W ) )  ->  S  =  U. ( F `  k
) )
163, 1, 13, 14, 15elptr2 20365 . 2  |-  ( ph  -> 
X_ k  e.  A  S  e.  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) } )
1712, 16sseldd 3442 1  |-  ( ph  -> 
X_ k  e.  A  S  e.  ( Xt_ `  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405   E.wex 1633    e. wcel 1842   {cab 2387   A.wral 2753   E.wrex 2754    \ cdif 3410    C_ wss 3413   U.cuni 4190    Fn wfn 5563   -->wf 5564   ` cfv 5568   X_cixp 7506   Fincfn 7553   topGenctg 15050   Xt_cpt 15051   Topctop 19684   TopBasesctb 19688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-oadd 7170  df-er 7347  df-ixp 7507  df-en 7554  df-fin 7557  df-fi 7904  df-topgen 15056  df-pt 15057  df-top 19689  df-bases 19691
This theorem is referenced by:  ptopn2  20375  xkopt  20446
  Copyright terms: Public domain W3C validator