MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthonprop Structured version   Unicode version

Theorem pthonprop 23623
Description: Properties of a path between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.)
Assertion
Ref Expression
pthonprop  |-  ( F ( A ( V PathOn  E ) B ) P  ->  ( (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  /\  ( F ( A ( V WalkOn  E ) B ) P  /\  F
( V Paths  E ) P ) ) )

Proof of Theorem pthonprop
Dummy variables  a 
b  e  f  p  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pthon 23570 . . 3  |- PathOn  =  ( v  e.  _V , 
e  e.  _V  |->  ( a  e.  v ,  b  e.  v  |->  {
<. f ,  p >.  |  ( f ( a ( v WalkOn  e ) b ) p  /\  f ( v Paths  e
) p ) } ) )
2 oveq12 6204 . . . . . 6  |-  ( ( v  =  V  /\  e  =  E )  ->  ( v WalkOn  e )  =  ( V WalkOn  E
) )
32oveqd 6212 . . . . 5  |-  ( ( v  =  V  /\  e  =  E )  ->  ( a ( v WalkOn 
e ) b )  =  ( a ( V WalkOn  E ) b ) )
43breqd 4406 . . . 4  |-  ( ( v  =  V  /\  e  =  E )  ->  ( f ( a ( v WalkOn  e ) b ) p  <->  f (
a ( V WalkOn  E
) b ) p ) )
5 oveq12 6204 . . . . 5  |-  ( ( v  =  V  /\  e  =  E )  ->  ( v Paths  e )  =  ( V Paths  E
) )
65breqd 4406 . . . 4  |-  ( ( v  =  V  /\  e  =  E )  ->  ( f ( v Paths 
e ) p  <->  f ( V Paths  E ) p ) )
74, 6anbi12d 710 . . 3  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ( f ( a ( v WalkOn  e
) b ) p  /\  f ( v Paths 
e ) p )  <-> 
( f ( a ( V WalkOn  E ) b ) p  /\  f ( V Paths  E
) p ) ) )
8 pthon 23621 . . 3  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( A ( V PathOn  E
) B )  =  { <. f ,  p >.  |  ( f ( A ( V WalkOn  E
) B ) p  /\  f ( V Paths 
E ) p ) } )
91, 7, 8bropopvvv 6758 . 2  |-  ( F ( A ( V PathOn  E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) )
10 ispthon 23622 . . . 4  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( F ( A ( V PathOn  E ) B ) P  <->  ( F
( A ( V WalkOn  E ) B ) P  /\  F ( V Paths  E ) P ) ) )
1110biimpd 207 . . 3  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( F ( A ( V PathOn  E ) B ) P  ->  ( F ( A ( V WalkOn  E ) B ) P  /\  F
( V Paths  E ) P ) ) )
1211imdistani 690 . 2  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
)  /\  F ( A ( V PathOn  E
) B ) P )  ->  ( (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  /\  ( F ( A ( V WalkOn  E ) B ) P  /\  F
( V Paths  E ) P ) ) )
139, 12mpancom 669 1  |-  ( F ( A ( V PathOn  E ) B ) P  ->  ( (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  /\  ( F ( A ( V WalkOn  E ) B ) P  /\  F
( V Paths  E ) P ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   _Vcvv 3072   class class class wbr 4395  (class class class)co 6195   Paths cpath 23554   WalkOn cwlkon 23556   PathOn cpthon 23558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-cnex 9444  ax-resscn 9445  ax-1cn 9446  ax-icn 9447  ax-addcl 9448  ax-addrcl 9449  ax-mulcl 9450  ax-mulrcl 9451  ax-mulcom 9452  ax-addass 9453  ax-mulass 9454  ax-distr 9455  ax-i2m1 9456  ax-1ne0 9457  ax-1rid 9458  ax-rnegex 9459  ax-rrecex 9460  ax-cnre 9461  ax-pre-lttri 9462  ax-pre-lttrn 9463  ax-pre-ltadd 9464  ax-pre-mulgt0 9465
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-int 4232  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-om 6582  df-1st 6682  df-2nd 6683  df-recs 6937  df-rdg 6971  df-1o 7025  df-oadd 7029  df-er 7206  df-map 7321  df-pm 7322  df-en 7416  df-dom 7417  df-sdom 7418  df-fin 7419  df-pnf 9526  df-mnf 9527  df-xr 9528  df-ltxr 9529  df-le 9530  df-sub 9703  df-neg 9704  df-nn 10429  df-n0 10686  df-z 10753  df-uz 10968  df-fz 11550  df-fzo 11661  df-word 12342  df-wlk 23562  df-trail 23563  df-pth 23564  df-pthon 23570
This theorem is referenced by:  pthonispth  23624
  Copyright terms: Public domain W3C validator