MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthistrl Structured version   Unicode version

Theorem pthistrl 25147
Description: A path is a trail (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.)
Assertion
Ref Expression
pthistrl  |-  ( F ( V Paths  E ) P  ->  F ( V Trails  E ) P )

Proof of Theorem pthistrl
Dummy variables  e 
f  p  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pth 25083 . . 3  |- Paths  =  ( v  e.  _V , 
e  e.  _V  |->  {
<. f ,  p >.  |  ( f ( v Trails 
e ) p  /\  Fun  `' ( p  |`  ( 1..^ ( # `  f
) ) )  /\  ( ( p " { 0 ,  (
# `  f ) } )  i^i  (
p " ( 1..^ ( # `  f
) ) ) )  =  (/) ) } )
21brovmpt2ex 6977 . 2  |-  ( F ( V Paths  E ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) )
3 ispth 25143 . . 3  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( V Paths  E ) P 
<->  ( F ( V Trails  E ) P  /\  Fun  `' ( P  |`  ( 1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) ) ) )
4 simp1 1005 . . 3  |-  ( ( F ( V Trails  E
) P  /\  Fun  `' ( P  |`  (
1..^ ( # `  F
) ) )  /\  ( ( P " { 0 ,  (
# `  F ) } )  i^i  ( P " ( 1..^ (
# `  F )
) ) )  =  (/) )  ->  F ( V Trails  E ) P )
53, 4syl6bi 231 . 2  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( V Paths  E ) P  ->  F ( V Trails  E ) P ) )
62, 5mpcom 37 1  |-  ( F ( V Paths  E ) P  ->  F ( V Trails  E ) P )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   _Vcvv 3087    i^i cin 3441   (/)c0 3767   {cpr 4004   class class class wbr 4426   `'ccnv 4853    |` cres 4856   "cima 4857   Fun wfun 5595   ` cfv 5601  (class class class)co 6305   0cc0 9538   1c1 9539  ..^cfzo 11913   #chash 12512   Trails ctrail 25072   Paths cpath 25073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-map 7482  df-pm 7483  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11783  df-fzo 11914  df-hash 12513  df-word 12651  df-wlk 25081  df-trail 25082  df-pth 25083
This theorem is referenced by:  pthon  25150  spthon  25157  isspthonpth  25159  cycls  25196  cycliscrct  25203  cyclnspth  25204  cycliswlk  25205  usgrcyclnl1  25213  usgrcyclnl2  25214  el2spthonot  25443  usg2wotspth  25457  usgra2pthspth  38421  spthdifv  38422  usgra2pth  38424
  Copyright terms: Public domain W3C validator