MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem5 Structured version   Unicode version

Theorem ptcmplem5 19587
Description: Lemma for ptcmp 19589. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1  |-  S  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
ptcmp.2  |-  X  = 
X_ n  e.  A  U. ( F `  n
)
ptcmp.3  |-  ( ph  ->  A  e.  V )
ptcmp.4  |-  ( ph  ->  F : A --> Comp )
ptcmp.5  |-  ( ph  ->  X  e.  (UFL  i^i  dom 
card ) )
Assertion
Ref Expression
ptcmplem5  |-  ( ph  ->  ( Xt_ `  F
)  e.  Comp )
Distinct variable groups:    k, n, u, w, A    S, k, n, u    ph, k, n, u    k, V, n, u, w    k, F, n, u, w    k, X, n, u, w
Allowed substitution hints:    ph( w)    S( w)

Proof of Theorem ptcmplem5
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3567 . . 3  |-  (UFL  i^i  dom 
card )  C_ UFL
2 ptcmp.5 . . 3  |-  ( ph  ->  X  e.  (UFL  i^i  dom 
card ) )
31, 2sseldi 3351 . 2  |-  ( ph  ->  X  e. UFL )
4 ptcmp.1 . . . 4  |-  S  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
5 ptcmp.2 . . . 4  |-  X  = 
X_ n  e.  A  U. ( F `  n
)
6 ptcmp.3 . . . 4  |-  ( ph  ->  A  e.  V )
7 ptcmp.4 . . . 4  |-  ( ph  ->  F : A --> Comp )
84, 5, 6, 7, 2ptcmplem1 19583 . . 3  |-  ( ph  ->  ( X  =  U. ( ran  S  u.  { X } )  /\  ( Xt_ `  F )  =  ( topGen `  ( fi `  ( ran  S  u.  { X } ) ) ) ) )
98simpld 456 . 2  |-  ( ph  ->  X  =  U. ( ran  S  u.  { X } ) )
108simprd 460 . 2  |-  ( ph  ->  ( Xt_ `  F
)  =  ( topGen `  ( fi `  ( ran  S  u.  { X } ) ) ) )
11 elpwi 3866 . . . . . 6  |-  ( y  e.  ~P ran  S  ->  y  C_  ran  S )
126ad2antrr 720 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  A  e.  V )
137ad2antrr 720 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  F : A
--> Comp )
142ad2antrr 720 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  X  e.  (UFL  i^i  dom  card ) )
15 simplrl 754 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  y  C_  ran  S )
16 simplrr 755 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  X  =  U. y )
17 simpr 458 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  -.  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )
18 imaeq2 5162 . . . . . . . . . . 11  |-  ( z  =  u  ->  ( `' ( w  e.  X  |->  ( w `  k ) ) "
z )  =  ( `' ( w  e.  X  |->  ( w `  k ) ) "
u ) )
1918eleq1d 2507 . . . . . . . . . 10  |-  ( z  =  u  ->  (
( `' ( w  e.  X  |->  ( w `
 k ) )
" z )  e.  y  <->  ( `' ( w  e.  X  |->  ( w `  k ) ) " u )  e.  y ) )
2019cbvrabv 2969 . . . . . . . . 9  |-  { z  e.  ( F `  k )  |  ( `' ( w  e.  X  |->  ( w `  k ) ) "
z )  e.  y }  =  { u  e.  ( F `  k
)  |  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
)  e.  y }
214, 5, 12, 13, 14, 15, 16, 17, 20ptcmplem4 19586 . . . . . . . 8  |-  -.  (
( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)
22 iman 424 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )  <->  -.  (
( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) )
2321, 22mpbir 209 . . . . . . 7  |-  ( (
ph  /\  ( y  C_ 
ran  S  /\  X  = 
U. y ) )  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z )
2423expr 612 . . . . . 6  |-  ( (
ph  /\  y  C_  ran  S )  ->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
2511, 24sylan2 471 . . . . 5  |-  ( (
ph  /\  y  e.  ~P ran  S )  -> 
( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
2625adantlr 709 . . . 4  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  y  e.  ~P ran  S )  ->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
27 selpw 3864 . . . . . . 7  |-  ( y  e.  ~P ( ran 
S  u.  { X } )  <->  y  C_  ( ran  S  u.  { X } ) )
28 eldif 3335 . . . . . . . 8  |-  ( y  e.  ( ~P ( ran  S  u.  { X } )  \  ~P ran  S )  <->  ( y  e.  ~P ( ran  S  u.  { X } )  /\  -.  y  e. 
~P ran  S )
)
29 elpwunsn 3914 . . . . . . . 8  |-  ( y  e.  ( ~P ( ran  S  u.  { X } )  \  ~P ran  S )  ->  X  e.  y )
3028, 29sylbir 213 . . . . . . 7  |-  ( ( y  e.  ~P ( ran  S  u.  { X } )  /\  -.  y  e.  ~P ran  S )  ->  X  e.  y )
3127, 30sylanbr 470 . . . . . 6  |-  ( ( y  C_  ( ran  S  u.  { X }
)  /\  -.  y  e.  ~P ran  S )  ->  X  e.  y )
3231adantll 708 . . . . 5  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  -.  y  e. 
~P ran  S )  ->  X  e.  y )
33 snssi 4014 . . . . . . . . 9  |-  ( X  e.  y  ->  { X }  C_  y )
3433adantl 463 . . . . . . . 8  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  { X }  C_  y )
35 snfi 7386 . . . . . . . . 9  |-  { X }  e.  Fin
3635a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  { X }  e.  Fin )
37 elfpw 7609 . . . . . . . 8  |-  ( { X }  e.  ( ~P y  i^i  Fin ) 
<->  ( { X }  C_  y  /\  { X }  e.  Fin )
)
3834, 36, 37sylanbrc 659 . . . . . . 7  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  { X }  e.  ( ~P y  i^i  Fin ) )
39 unisng 4104 . . . . . . . . 9  |-  ( X  e.  y  ->  U. { X }  =  X
)
4039eqcomd 2446 . . . . . . . 8  |-  ( X  e.  y  ->  X  =  U. { X }
)
4140adantl 463 . . . . . . 7  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  X  =  U. { X } )
42 unieq 4096 . . . . . . . . 9  |-  ( z  =  { X }  ->  U. z  =  U. { X } )
4342eqeq2d 2452 . . . . . . . 8  |-  ( z  =  { X }  ->  ( X  =  U. z 
<->  X  =  U. { X } ) )
4443rspcev 3070 . . . . . . 7  |-  ( ( { X }  e.  ( ~P y  i^i  Fin )  /\  X  =  U. { X } )  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)
4538, 41, 44syl2anc 656 . . . . . 6  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )
4645a1d 25 . . . . 5  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) )
4732, 46syldan 467 . . . 4  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  -.  y  e. 
~P ran  S )  ->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
4826, 47pm2.61dan 784 . . 3  |-  ( (
ph  /\  y  C_  ( ran  S  u.  { X } ) )  -> 
( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
4948impr 616 . 2  |-  ( (
ph  /\  ( y  C_  ( ran  S  u.  { X } )  /\  X  =  U. y
) )  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )
503, 9, 10, 49alexsub 19576 1  |-  ( ph  ->  ( Xt_ `  F
)  e.  Comp )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761   E.wrex 2714   {crab 2717    \ cdif 3322    u. cun 3323    i^i cin 3324    C_ wss 3325   ~Pcpw 3857   {csn 3874   U.cuni 4088    e. cmpt 4347   `'ccnv 4835   dom cdm 4836   ran crn 4837   "cima 4839   -->wf 5411   ` cfv 5415    e. cmpt2 6092   X_cixp 7259   Fincfn 7306   ficfi 7656   cardccrd 8101   topGenctg 14372   Xt_cpt 14373   Compccmp 18948  UFLcufl 19432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-omul 6921  df-er 7097  df-map 7212  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fi 7657  df-wdom 7770  df-card 8105  df-acn 8108  df-topgen 14378  df-pt 14379  df-fbas 17773  df-fg 17774  df-top 18462  df-bases 18464  df-topon 18465  df-cld 18582  df-ntr 18583  df-cls 18584  df-nei 18661  df-cmp 18949  df-fil 19378  df-ufil 19433  df-ufl 19434  df-flim 19471  df-fcls 19473
This theorem is referenced by:  ptcmpg  19588
  Copyright terms: Public domain W3C validator