MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem4 Structured version   Unicode version

Theorem ptcmplem4 19632
Description: Lemma for ptcmp 19635. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1  |-  S  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
ptcmp.2  |-  X  = 
X_ n  e.  A  U. ( F `  n
)
ptcmp.3  |-  ( ph  ->  A  e.  V )
ptcmp.4  |-  ( ph  ->  F : A --> Comp )
ptcmp.5  |-  ( ph  ->  X  e.  (UFL  i^i  dom 
card ) )
ptcmplem2.5  |-  ( ph  ->  U  C_  ran  S )
ptcmplem2.6  |-  ( ph  ->  X  =  U. U
)
ptcmplem2.7  |-  ( ph  ->  -.  E. z  e.  ( ~P U  i^i  Fin ) X  =  U. z )
ptcmplem3.8  |-  K  =  { u  e.  ( F `  k )  |  ( `' ( w  e.  X  |->  ( w `  k ) ) " u )  e.  U }
Assertion
Ref Expression
ptcmplem4  |-  -.  ph
Distinct variable groups:    k, n, u, w, z, A    u, K    S, k, n, u, z    ph, k, n, u    U, k, u, z    k, V, n, u, w, z   
k, F, n, u, w, z    k, X, n, u, w, z
Allowed substitution hints:    ph( z, w)    S( w)    U( w, n)    K( z, w, k, n)

Proof of Theorem ptcmplem4
Dummy variables  f 
v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmp.1 . . 3  |-  S  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
2 ptcmp.2 . . 3  |-  X  = 
X_ n  e.  A  U. ( F `  n
)
3 ptcmp.3 . . 3  |-  ( ph  ->  A  e.  V )
4 ptcmp.4 . . 3  |-  ( ph  ->  F : A --> Comp )
5 ptcmp.5 . . 3  |-  ( ph  ->  X  e.  (UFL  i^i  dom 
card ) )
6 ptcmplem2.5 . . 3  |-  ( ph  ->  U  C_  ran  S )
7 ptcmplem2.6 . . 3  |-  ( ph  ->  X  =  U. U
)
8 ptcmplem2.7 . . 3  |-  ( ph  ->  -.  E. z  e.  ( ~P U  i^i  Fin ) X  =  U. z )
9 ptcmplem3.8 . . 3  |-  K  =  { u  e.  ( F `  k )  |  ( `' ( w  e.  X  |->  ( w `  k ) ) " u )  e.  U }
101, 2, 3, 4, 5, 6, 7, 8, 9ptcmplem3 19631 . 2  |-  ( ph  ->  E. f ( f  Fn  A  /\  A. k  e.  A  (
f `  k )  e.  ( U. ( F `
 k )  \  U. K ) ) )
11 simprl 755 . . . . . . . . 9  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  f  Fn  A
)
12 eldifi 3483 . . . . . . . . . . . 12  |-  ( ( f `  k )  e.  ( U. ( F `  k )  \  U. K )  -> 
( f `  k
)  e.  U. ( F `  k )
)
1312ralimi 2796 . . . . . . . . . . 11  |-  ( A. k  e.  A  (
f `  k )  e.  ( U. ( F `
 k )  \  U. K )  ->  A. k  e.  A  ( f `  k )  e.  U. ( F `  k ) )
14 fveq2 5696 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
f `  n )  =  ( f `  k ) )
15 fveq2 5696 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
1615unieqd 4106 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  U. ( F `  n )  =  U. ( F `  k ) )
1714, 16eleq12d 2511 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( f `  n
)  e.  U. ( F `  n )  <->  ( f `  k )  e.  U. ( F `
 k ) ) )
1817cbvralv 2952 . . . . . . . . . . 11  |-  ( A. n  e.  A  (
f `  n )  e.  U. ( F `  n )  <->  A. k  e.  A  ( f `  k )  e.  U. ( F `  k ) )
1913, 18sylibr 212 . . . . . . . . . 10  |-  ( A. k  e.  A  (
f `  k )  e.  ( U. ( F `
 k )  \  U. K )  ->  A. n  e.  A  ( f `  n )  e.  U. ( F `  n ) )
2019ad2antll 728 . . . . . . . . 9  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  A. n  e.  A  ( f `  n
)  e.  U. ( F `  n )
)
21 vex 2980 . . . . . . . . . 10  |-  f  e. 
_V
2221elixp 7275 . . . . . . . . 9  |-  ( f  e.  X_ n  e.  A  U. ( F `  n
)  <->  ( f  Fn  A  /\  A. n  e.  A  ( f `  n )  e.  U. ( F `  n ) ) )
2311, 20, 22sylanbrc 664 . . . . . . . 8  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  f  e.  X_ n  e.  A  U. ( F `  n ) )
2423, 2syl6eleqr 2534 . . . . . . 7  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  f  e.  X
)
257adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  X  =  U. U )
2624, 25eleqtrd 2519 . . . . . 6  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  f  e.  U. U )
27 eluni2 4100 . . . . . 6  |-  ( f  e.  U. U  <->  E. v  e.  U  f  e.  v )
2826, 27sylib 196 . . . . 5  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  E. v  e.  U  f  e.  v )
29 simplrr 760 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v
) )  /\  (
k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  ->  f  e.  v )
3029adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  f  e.  v )
31 simprr 756 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) )
3230, 31eleqtrd 2519 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  f  e.  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
33 fveq1 5695 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  f  ->  (
w `  k )  =  ( f `  k ) )
3433eleq1d 2509 . . . . . . . . . . . . . . . . 17  |-  ( w  =  f  ->  (
( w `  k
)  e.  u  <->  ( f `  k )  e.  u
) )
35 eqid 2443 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  X  |->  ( w `
 k ) )  =  ( w  e.  X  |->  ( w `  k ) )
3635mptpreima 5336 . . . . . . . . . . . . . . . . 17  |-  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
)  =  { w  e.  X  |  (
w `  k )  e.  u }
3734, 36elrab2 3124 . . . . . . . . . . . . . . . 16  |-  ( f  e.  ( `' ( w  e.  X  |->  ( w `  k ) ) " u )  <-> 
( f  e.  X  /\  ( f `  k
)  e.  u ) )
3837simprbi 464 . . . . . . . . . . . . . . 15  |-  ( f  e.  ( `' ( w  e.  X  |->  ( w `  k ) ) " u )  ->  ( f `  k )  e.  u
)
3932, 38syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  (
f `  k )  e.  u )
40 simprl 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  u  e.  ( F `  k
) )
41 simplrl 759 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v
) )  /\  (
k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  ->  v  e.  U )
4241adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  v  e.  U )
4331, 42eqeltrrd 2518 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  ( `' ( w  e.  X  |->  ( w `  k ) ) "
u )  e.  U
)
44 rabid 2902 . . . . . . . . . . . . . . . 16  |-  ( u  e.  { u  e.  ( F `  k
)  |  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
)  e.  U }  <->  ( u  e.  ( F `
 k )  /\  ( `' ( w  e.  X  |->  ( w `  k ) ) "
u )  e.  U
) )
4540, 43, 44sylanbrc 664 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  u  e.  { u  e.  ( F `  k )  |  ( `' ( w  e.  X  |->  ( w `  k ) ) " u )  e.  U } )
4645, 9syl6eleqr 2534 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  u  e.  K )
47 elunii 4101 . . . . . . . . . . . . . 14  |-  ( ( ( f `  k
)  e.  u  /\  u  e.  K )  ->  ( f `  k
)  e.  U. K
)
4839, 46, 47syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  (
f `  k )  e.  U. K )
4948rexlimdvaa 2847 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v
) )  /\  (
k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  ->  ( E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u )  -> 
( f `  k
)  e.  U. K
) )
5049expr 615 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v
) )  /\  k  e.  A )  ->  (
( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K )  -> 
( E. u  e.  ( F `  k
) v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) "
u )  ->  (
f `  k )  e.  U. K ) ) )
5150ralimdva 2799 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  Fn  A )  /\  (
v  e.  U  /\  f  e.  v )
)  ->  ( A. k  e.  A  (
f `  k )  e.  ( U. ( F `
 k )  \  U. K )  ->  A. k  e.  A  ( E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u )  -> 
( f `  k
)  e.  U. K
) ) )
5251ex 434 . . . . . . . . 9  |-  ( (
ph  /\  f  Fn  A )  ->  (
( v  e.  U  /\  f  e.  v
)  ->  ( A. k  e.  A  (
f `  k )  e.  ( U. ( F `
 k )  \  U. K )  ->  A. k  e.  A  ( E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u )  -> 
( f `  k
)  e.  U. K
) ) ) )
5352com23 78 . . . . . . . 8  |-  ( (
ph  /\  f  Fn  A )  ->  ( A. k  e.  A  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K )  -> 
( ( v  e.  U  /\  f  e.  v )  ->  A. k  e.  A  ( E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u )  -> 
( f `  k
)  e.  U. K
) ) ) )
5453impr 619 . . . . . . 7  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  ( ( v  e.  U  /\  f  e.  v )  ->  A. k  e.  A  ( E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u )  -> 
( f `  k
)  e.  U. K
) ) )
5554imp 429 . . . . . 6  |-  ( ( ( ph  /\  (
f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  /\  ( v  e.  U  /\  f  e.  v ) )  ->  A. k  e.  A  ( E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
)  ->  ( f `  k )  e.  U. K ) )
566adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  U  C_  ran  S )
5756sselda 3361 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  /\  v  e.  U )  ->  v  e.  ran  S )
5857adantrr 716 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  /\  ( v  e.  U  /\  f  e.  v ) )  -> 
v  e.  ran  S
)
591rnmpt2 6205 . . . . . . . 8  |-  ran  S  =  { v  |  E. k  e.  A  E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) }
6058, 59syl6eleq 2533 . . . . . . 7  |-  ( ( ( ph  /\  (
f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  /\  ( v  e.  U  /\  f  e.  v ) )  -> 
v  e.  { v  |  E. k  e.  A  E. u  e.  ( F `  k
) v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) "
u ) } )
61 abid 2431 . . . . . . 7  |-  ( v  e.  { v  |  E. k  e.  A  E. u  e.  ( F `  k )
v  =  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
) }  <->  E. k  e.  A  E. u  e.  ( F `  k
) v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) "
u ) )
6260, 61sylib 196 . . . . . 6  |-  ( ( ( ph  /\  (
f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  /\  ( v  e.  U  /\  f  e.  v ) )  ->  E. k  e.  A  E. u  e.  ( F `  k )
v  =  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
) )
63 rexim 2825 . . . . . 6  |-  ( A. k  e.  A  ( E. u  e.  ( F `  k )
v  =  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
)  ->  ( f `  k )  e.  U. K )  ->  ( E. k  e.  A  E. u  e.  ( F `  k )
v  =  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
)  ->  E. k  e.  A  ( f `  k )  e.  U. K ) )
6455, 62, 63sylc 60 . . . . 5  |-  ( ( ( ph  /\  (
f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  /\  ( v  e.  U  /\  f  e.  v ) )  ->  E. k  e.  A  ( f `  k
)  e.  U. K
)
6528, 64rexlimddv 2850 . . . 4  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  E. k  e.  A  ( f `  k
)  e.  U. K
)
66 eldifn 3484 . . . . . . 7  |-  ( ( f `  k )  e.  ( U. ( F `  k )  \  U. K )  ->  -.  ( f `  k
)  e.  U. K
)
6766ralimi 2796 . . . . . 6  |-  ( A. k  e.  A  (
f `  k )  e.  ( U. ( F `
 k )  \  U. K )  ->  A. k  e.  A  -.  (
f `  k )  e.  U. K )
6867ad2antll 728 . . . . 5  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  A. k  e.  A  -.  ( f `  k
)  e.  U. K
)
69 ralnex 2730 . . . . 5  |-  ( A. k  e.  A  -.  ( f `  k
)  e.  U. K  <->  -. 
E. k  e.  A  ( f `  k
)  e.  U. K
)
7068, 69sylib 196 . . . 4  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  -.  E. k  e.  A  ( f `  k )  e.  U. K )
7165, 70pm2.65da 576 . . 3  |-  ( ph  ->  -.  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )
7271nexdv 1818 . 2  |-  ( ph  ->  -.  E. f ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )
7310, 72pm2.65i 173 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   {cab 2429   A.wral 2720   E.wrex 2721   {crab 2724    \ cdif 3330    i^i cin 3332    C_ wss 3333   ~Pcpw 3865   U.cuni 4096    e. cmpt 4355   `'ccnv 4844   dom cdm 4845   ran crn 4846   "cima 4848    Fn wfn 5418   -->wf 5419   ` cfv 5423    e. cmpt2 6098   X_cixp 7268   Fincfn 7315   cardccrd 8110   Compccmp 18994  UFLcufl 19478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-1st 6582  df-2nd 6583  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-omul 6930  df-er 7106  df-map 7221  df-ixp 7269  df-en 7316  df-dom 7317  df-fin 7319  df-wdom 7779  df-card 8114  df-acn 8117  df-cmp 18995
This theorem is referenced by:  ptcmplem5  19633
  Copyright terms: Public domain W3C validator