MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem4 Structured version   Visualization version   Unicode version

Theorem ptcmplem4 21148
Description: Lemma for ptcmp 21151. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1  |-  S  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
ptcmp.2  |-  X  = 
X_ n  e.  A  U. ( F `  n
)
ptcmp.3  |-  ( ph  ->  A  e.  V )
ptcmp.4  |-  ( ph  ->  F : A --> Comp )
ptcmp.5  |-  ( ph  ->  X  e.  (UFL  i^i  dom 
card ) )
ptcmplem2.5  |-  ( ph  ->  U  C_  ran  S )
ptcmplem2.6  |-  ( ph  ->  X  =  U. U
)
ptcmplem2.7  |-  ( ph  ->  -.  E. z  e.  ( ~P U  i^i  Fin ) X  =  U. z )
ptcmplem3.8  |-  K  =  { u  e.  ( F `  k )  |  ( `' ( w  e.  X  |->  ( w `  k ) ) " u )  e.  U }
Assertion
Ref Expression
ptcmplem4  |-  -.  ph
Distinct variable groups:    k, n, u, w, z, A    u, K    S, k, n, u, z    ph, k, n, u    U, k, u, z    k, V, n, u, w, z   
k, F, n, u, w, z    k, X, n, u, w, z
Allowed substitution hints:    ph( z, w)    S( w)    U( w, n)    K( z, w, k, n)

Proof of Theorem ptcmplem4
Dummy variables  f 
v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmp.1 . . 3  |-  S  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
2 ptcmp.2 . . 3  |-  X  = 
X_ n  e.  A  U. ( F `  n
)
3 ptcmp.3 . . 3  |-  ( ph  ->  A  e.  V )
4 ptcmp.4 . . 3  |-  ( ph  ->  F : A --> Comp )
5 ptcmp.5 . . 3  |-  ( ph  ->  X  e.  (UFL  i^i  dom 
card ) )
6 ptcmplem2.5 . . 3  |-  ( ph  ->  U  C_  ran  S )
7 ptcmplem2.6 . . 3  |-  ( ph  ->  X  =  U. U
)
8 ptcmplem2.7 . . 3  |-  ( ph  ->  -.  E. z  e.  ( ~P U  i^i  Fin ) X  =  U. z )
9 ptcmplem3.8 . . 3  |-  K  =  { u  e.  ( F `  k )  |  ( `' ( w  e.  X  |->  ( w `  k ) ) " u )  e.  U }
101, 2, 3, 4, 5, 6, 7, 8, 9ptcmplem3 21147 . 2  |-  ( ph  ->  E. f ( f  Fn  A  /\  A. k  e.  A  (
f `  k )  e.  ( U. ( F `
 k )  \  U. K ) ) )
11 simprl 772 . . . . . . . . 9  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  f  Fn  A
)
12 eldifi 3544 . . . . . . . . . . . 12  |-  ( ( f `  k )  e.  ( U. ( F `  k )  \  U. K )  -> 
( f `  k
)  e.  U. ( F `  k )
)
1312ralimi 2796 . . . . . . . . . . 11  |-  ( A. k  e.  A  (
f `  k )  e.  ( U. ( F `
 k )  \  U. K )  ->  A. k  e.  A  ( f `  k )  e.  U. ( F `  k ) )
14 fveq2 5879 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
f `  n )  =  ( f `  k ) )
15 fveq2 5879 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
1615unieqd 4200 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  U. ( F `  n )  =  U. ( F `  k ) )
1714, 16eleq12d 2543 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( f `  n
)  e.  U. ( F `  n )  <->  ( f `  k )  e.  U. ( F `
 k ) ) )
1817cbvralv 3005 . . . . . . . . . . 11  |-  ( A. n  e.  A  (
f `  n )  e.  U. ( F `  n )  <->  A. k  e.  A  ( f `  k )  e.  U. ( F `  k ) )
1913, 18sylibr 217 . . . . . . . . . 10  |-  ( A. k  e.  A  (
f `  k )  e.  ( U. ( F `
 k )  \  U. K )  ->  A. n  e.  A  ( f `  n )  e.  U. ( F `  n ) )
2019ad2antll 743 . . . . . . . . 9  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  A. n  e.  A  ( f `  n
)  e.  U. ( F `  n )
)
21 vex 3034 . . . . . . . . . 10  |-  f  e. 
_V
2221elixp 7547 . . . . . . . . 9  |-  ( f  e.  X_ n  e.  A  U. ( F `  n
)  <->  ( f  Fn  A  /\  A. n  e.  A  ( f `  n )  e.  U. ( F `  n ) ) )
2311, 20, 22sylanbrc 677 . . . . . . . 8  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  f  e.  X_ n  e.  A  U. ( F `  n ) )
2423, 2syl6eleqr 2560 . . . . . . 7  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  f  e.  X
)
257adantr 472 . . . . . . 7  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  X  =  U. U )
2624, 25eleqtrd 2551 . . . . . 6  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  f  e.  U. U )
27 eluni2 4194 . . . . . 6  |-  ( f  e.  U. U  <->  E. v  e.  U  f  e.  v )
2826, 27sylib 201 . . . . 5  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  E. v  e.  U  f  e.  v )
29 simplrr 779 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v
) )  /\  (
k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  ->  f  e.  v )
3029adantr 472 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  f  e.  v )
31 simprr 774 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) )
3230, 31eleqtrd 2551 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  f  e.  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
33 fveq1 5878 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  f  ->  (
w `  k )  =  ( f `  k ) )
3433eleq1d 2533 . . . . . . . . . . . . . . . . 17  |-  ( w  =  f  ->  (
( w `  k
)  e.  u  <->  ( f `  k )  e.  u
) )
35 eqid 2471 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  X  |->  ( w `
 k ) )  =  ( w  e.  X  |->  ( w `  k ) )
3635mptpreima 5335 . . . . . . . . . . . . . . . . 17  |-  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
)  =  { w  e.  X  |  (
w `  k )  e.  u }
3734, 36elrab2 3186 . . . . . . . . . . . . . . . 16  |-  ( f  e.  ( `' ( w  e.  X  |->  ( w `  k ) ) " u )  <-> 
( f  e.  X  /\  ( f `  k
)  e.  u ) )
3837simprbi 471 . . . . . . . . . . . . . . 15  |-  ( f  e.  ( `' ( w  e.  X  |->  ( w `  k ) ) " u )  ->  ( f `  k )  e.  u
)
3932, 38syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  (
f `  k )  e.  u )
40 simprl 772 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  u  e.  ( F `  k
) )
41 simplrl 778 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v
) )  /\  (
k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  ->  v  e.  U )
4241adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  v  e.  U )
4331, 42eqeltrrd 2550 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  ( `' ( w  e.  X  |->  ( w `  k ) ) "
u )  e.  U
)
44 rabid 2953 . . . . . . . . . . . . . . . 16  |-  ( u  e.  { u  e.  ( F `  k
)  |  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
)  e.  U }  <->  ( u  e.  ( F `
 k )  /\  ( `' ( w  e.  X  |->  ( w `  k ) ) "
u )  e.  U
) )
4540, 43, 44sylanbrc 677 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  u  e.  { u  e.  ( F `  k )  |  ( `' ( w  e.  X  |->  ( w `  k ) ) " u )  e.  U } )
4645, 9syl6eleqr 2560 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  u  e.  K )
47 elunii 4195 . . . . . . . . . . . . . 14  |-  ( ( ( f `  k
)  e.  u  /\  u  e.  K )  ->  ( f `  k
)  e.  U. K
)
4839, 46, 47syl2anc 673 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  (
f `  k )  e.  U. K )
4948rexlimdvaa 2872 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v
) )  /\  (
k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  ->  ( E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u )  -> 
( f `  k
)  e.  U. K
) )
5049expr 626 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v
) )  /\  k  e.  A )  ->  (
( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K )  -> 
( E. u  e.  ( F `  k
) v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) "
u )  ->  (
f `  k )  e.  U. K ) ) )
5150ralimdva 2805 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  Fn  A )  /\  (
v  e.  U  /\  f  e.  v )
)  ->  ( A. k  e.  A  (
f `  k )  e.  ( U. ( F `
 k )  \  U. K )  ->  A. k  e.  A  ( E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u )  -> 
( f `  k
)  e.  U. K
) ) )
5251ex 441 . . . . . . . . 9  |-  ( (
ph  /\  f  Fn  A )  ->  (
( v  e.  U  /\  f  e.  v
)  ->  ( A. k  e.  A  (
f `  k )  e.  ( U. ( F `
 k )  \  U. K )  ->  A. k  e.  A  ( E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u )  -> 
( f `  k
)  e.  U. K
) ) ) )
5352com23 80 . . . . . . . 8  |-  ( (
ph  /\  f  Fn  A )  ->  ( A. k  e.  A  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K )  -> 
( ( v  e.  U  /\  f  e.  v )  ->  A. k  e.  A  ( E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u )  -> 
( f `  k
)  e.  U. K
) ) ) )
5453impr 631 . . . . . . 7  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  ( ( v  e.  U  /\  f  e.  v )  ->  A. k  e.  A  ( E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u )  -> 
( f `  k
)  e.  U. K
) ) )
5554imp 436 . . . . . 6  |-  ( ( ( ph  /\  (
f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  /\  ( v  e.  U  /\  f  e.  v ) )  ->  A. k  e.  A  ( E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
)  ->  ( f `  k )  e.  U. K ) )
566adantr 472 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  U  C_  ran  S )
5756sselda 3418 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  /\  v  e.  U )  ->  v  e.  ran  S )
5857adantrr 731 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  /\  ( v  e.  U  /\  f  e.  v ) )  -> 
v  e.  ran  S
)
591rnmpt2 6425 . . . . . . . 8  |-  ran  S  =  { v  |  E. k  e.  A  E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) }
6058, 59syl6eleq 2559 . . . . . . 7  |-  ( ( ( ph  /\  (
f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  /\  ( v  e.  U  /\  f  e.  v ) )  -> 
v  e.  { v  |  E. k  e.  A  E. u  e.  ( F `  k
) v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) "
u ) } )
61 abid 2459 . . . . . . 7  |-  ( v  e.  { v  |  E. k  e.  A  E. u  e.  ( F `  k )
v  =  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
) }  <->  E. k  e.  A  E. u  e.  ( F `  k
) v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) "
u ) )
6260, 61sylib 201 . . . . . 6  |-  ( ( ( ph  /\  (
f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  /\  ( v  e.  U  /\  f  e.  v ) )  ->  E. k  e.  A  E. u  e.  ( F `  k )
v  =  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
) )
63 rexim 2849 . . . . . 6  |-  ( A. k  e.  A  ( E. u  e.  ( F `  k )
v  =  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
)  ->  ( f `  k )  e.  U. K )  ->  ( E. k  e.  A  E. u  e.  ( F `  k )
v  =  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
)  ->  E. k  e.  A  ( f `  k )  e.  U. K ) )
6455, 62, 63sylc 61 . . . . 5  |-  ( ( ( ph  /\  (
f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  /\  ( v  e.  U  /\  f  e.  v ) )  ->  E. k  e.  A  ( f `  k
)  e.  U. K
)
6528, 64rexlimddv 2875 . . . 4  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  E. k  e.  A  ( f `  k
)  e.  U. K
)
66 eldifn 3545 . . . . . . 7  |-  ( ( f `  k )  e.  ( U. ( F `  k )  \  U. K )  ->  -.  ( f `  k
)  e.  U. K
)
6766ralimi 2796 . . . . . 6  |-  ( A. k  e.  A  (
f `  k )  e.  ( U. ( F `
 k )  \  U. K )  ->  A. k  e.  A  -.  (
f `  k )  e.  U. K )
6867ad2antll 743 . . . . 5  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  A. k  e.  A  -.  ( f `  k
)  e.  U. K
)
69 ralnex 2834 . . . . 5  |-  ( A. k  e.  A  -.  ( f `  k
)  e.  U. K  <->  -. 
E. k  e.  A  ( f `  k
)  e.  U. K
)
7068, 69sylib 201 . . . 4  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  -.  E. k  e.  A  ( f `  k )  e.  U. K )
7165, 70pm2.65da 586 . . 3  |-  ( ph  ->  -.  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )
7271nexdv 1790 . 2  |-  ( ph  ->  -.  E. f ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )
7310, 72pm2.65i 178 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904   {cab 2457   A.wral 2756   E.wrex 2757   {crab 2760    \ cdif 3387    i^i cin 3389    C_ wss 3390   ~Pcpw 3942   U.cuni 4190    |-> cmpt 4454   `'ccnv 4838   dom cdm 4839   ran crn 4840   "cima 4842    Fn wfn 5584   -->wf 5585   ` cfv 5589    |-> cmpt2 6310   X_cixp 7540   Fincfn 7587   cardccrd 8387   Compccmp 20478  UFLcufl 20993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-omul 7205  df-er 7381  df-map 7492  df-ixp 7541  df-en 7588  df-dom 7589  df-fin 7591  df-wdom 8092  df-card 8391  df-acn 8394  df-cmp 20479
This theorem is referenced by:  ptcmplem5  21149
  Copyright terms: Public domain W3C validator