MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem4 Structured version   Unicode version

Theorem ptcmplem4 20290
Description: Lemma for ptcmp 20293. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1  |-  S  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
ptcmp.2  |-  X  = 
X_ n  e.  A  U. ( F `  n
)
ptcmp.3  |-  ( ph  ->  A  e.  V )
ptcmp.4  |-  ( ph  ->  F : A --> Comp )
ptcmp.5  |-  ( ph  ->  X  e.  (UFL  i^i  dom 
card ) )
ptcmplem2.5  |-  ( ph  ->  U  C_  ran  S )
ptcmplem2.6  |-  ( ph  ->  X  =  U. U
)
ptcmplem2.7  |-  ( ph  ->  -.  E. z  e.  ( ~P U  i^i  Fin ) X  =  U. z )
ptcmplem3.8  |-  K  =  { u  e.  ( F `  k )  |  ( `' ( w  e.  X  |->  ( w `  k ) ) " u )  e.  U }
Assertion
Ref Expression
ptcmplem4  |-  -.  ph
Distinct variable groups:    k, n, u, w, z, A    u, K    S, k, n, u, z    ph, k, n, u    U, k, u, z    k, V, n, u, w, z   
k, F, n, u, w, z    k, X, n, u, w, z
Allowed substitution hints:    ph( z, w)    S( w)    U( w, n)    K( z, w, k, n)

Proof of Theorem ptcmplem4
Dummy variables  f 
v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmp.1 . . 3  |-  S  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
2 ptcmp.2 . . 3  |-  X  = 
X_ n  e.  A  U. ( F `  n
)
3 ptcmp.3 . . 3  |-  ( ph  ->  A  e.  V )
4 ptcmp.4 . . 3  |-  ( ph  ->  F : A --> Comp )
5 ptcmp.5 . . 3  |-  ( ph  ->  X  e.  (UFL  i^i  dom 
card ) )
6 ptcmplem2.5 . . 3  |-  ( ph  ->  U  C_  ran  S )
7 ptcmplem2.6 . . 3  |-  ( ph  ->  X  =  U. U
)
8 ptcmplem2.7 . . 3  |-  ( ph  ->  -.  E. z  e.  ( ~P U  i^i  Fin ) X  =  U. z )
9 ptcmplem3.8 . . 3  |-  K  =  { u  e.  ( F `  k )  |  ( `' ( w  e.  X  |->  ( w `  k ) ) " u )  e.  U }
101, 2, 3, 4, 5, 6, 7, 8, 9ptcmplem3 20289 . 2  |-  ( ph  ->  E. f ( f  Fn  A  /\  A. k  e.  A  (
f `  k )  e.  ( U. ( F `
 k )  \  U. K ) ) )
11 simprl 755 . . . . . . . . 9  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  f  Fn  A
)
12 eldifi 3626 . . . . . . . . . . . 12  |-  ( ( f `  k )  e.  ( U. ( F `  k )  \  U. K )  -> 
( f `  k
)  e.  U. ( F `  k )
)
1312ralimi 2857 . . . . . . . . . . 11  |-  ( A. k  e.  A  (
f `  k )  e.  ( U. ( F `
 k )  \  U. K )  ->  A. k  e.  A  ( f `  k )  e.  U. ( F `  k ) )
14 fveq2 5864 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
f `  n )  =  ( f `  k ) )
15 fveq2 5864 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
1615unieqd 4255 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  U. ( F `  n )  =  U. ( F `  k ) )
1714, 16eleq12d 2549 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( f `  n
)  e.  U. ( F `  n )  <->  ( f `  k )  e.  U. ( F `
 k ) ) )
1817cbvralv 3088 . . . . . . . . . . 11  |-  ( A. n  e.  A  (
f `  n )  e.  U. ( F `  n )  <->  A. k  e.  A  ( f `  k )  e.  U. ( F `  k ) )
1913, 18sylibr 212 . . . . . . . . . 10  |-  ( A. k  e.  A  (
f `  k )  e.  ( U. ( F `
 k )  \  U. K )  ->  A. n  e.  A  ( f `  n )  e.  U. ( F `  n ) )
2019ad2antll 728 . . . . . . . . 9  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  A. n  e.  A  ( f `  n
)  e.  U. ( F `  n )
)
21 vex 3116 . . . . . . . . . 10  |-  f  e. 
_V
2221elixp 7473 . . . . . . . . 9  |-  ( f  e.  X_ n  e.  A  U. ( F `  n
)  <->  ( f  Fn  A  /\  A. n  e.  A  ( f `  n )  e.  U. ( F `  n ) ) )
2311, 20, 22sylanbrc 664 . . . . . . . 8  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  f  e.  X_ n  e.  A  U. ( F `  n ) )
2423, 2syl6eleqr 2566 . . . . . . 7  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  f  e.  X
)
257adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  X  =  U. U )
2624, 25eleqtrd 2557 . . . . . 6  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  f  e.  U. U )
27 eluni2 4249 . . . . . 6  |-  ( f  e.  U. U  <->  E. v  e.  U  f  e.  v )
2826, 27sylib 196 . . . . 5  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  E. v  e.  U  f  e.  v )
29 simplrr 760 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v
) )  /\  (
k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  ->  f  e.  v )
3029adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  f  e.  v )
31 simprr 756 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) )
3230, 31eleqtrd 2557 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  f  e.  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
33 fveq1 5863 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  f  ->  (
w `  k )  =  ( f `  k ) )
3433eleq1d 2536 . . . . . . . . . . . . . . . . 17  |-  ( w  =  f  ->  (
( w `  k
)  e.  u  <->  ( f `  k )  e.  u
) )
35 eqid 2467 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  X  |->  ( w `
 k ) )  =  ( w  e.  X  |->  ( w `  k ) )
3635mptpreima 5498 . . . . . . . . . . . . . . . . 17  |-  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
)  =  { w  e.  X  |  (
w `  k )  e.  u }
3734, 36elrab2 3263 . . . . . . . . . . . . . . . 16  |-  ( f  e.  ( `' ( w  e.  X  |->  ( w `  k ) ) " u )  <-> 
( f  e.  X  /\  ( f `  k
)  e.  u ) )
3837simprbi 464 . . . . . . . . . . . . . . 15  |-  ( f  e.  ( `' ( w  e.  X  |->  ( w `  k ) ) " u )  ->  ( f `  k )  e.  u
)
3932, 38syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  (
f `  k )  e.  u )
40 simprl 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  u  e.  ( F `  k
) )
41 simplrl 759 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v
) )  /\  (
k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  ->  v  e.  U )
4241adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  v  e.  U )
4331, 42eqeltrrd 2556 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  ( `' ( w  e.  X  |->  ( w `  k ) ) "
u )  e.  U
)
44 rabid 3038 . . . . . . . . . . . . . . . 16  |-  ( u  e.  { u  e.  ( F `  k
)  |  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
)  e.  U }  <->  ( u  e.  ( F `
 k )  /\  ( `' ( w  e.  X  |->  ( w `  k ) ) "
u )  e.  U
) )
4540, 43, 44sylanbrc 664 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  u  e.  { u  e.  ( F `  k )  |  ( `' ( w  e.  X  |->  ( w `  k ) ) " u )  e.  U } )
4645, 9syl6eleqr 2566 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  u  e.  K )
47 elunii 4250 . . . . . . . . . . . . . 14  |-  ( ( ( f `  k
)  e.  u  /\  u  e.  K )  ->  ( f `  k
)  e.  U. K
)
4839, 46, 47syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v ) )  /\  ( k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  /\  ( u  e.  ( F `  k )  /\  v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) " u ) ) )  ->  (
f `  k )  e.  U. K )
4948rexlimdvaa 2956 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v
) )  /\  (
k  e.  A  /\  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K ) ) )  ->  ( E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u )  -> 
( f `  k
)  e.  U. K
) )
5049expr 615 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  Fn  A )  /\  ( v  e.  U  /\  f  e.  v
) )  /\  k  e.  A )  ->  (
( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K )  -> 
( E. u  e.  ( F `  k
) v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) "
u )  ->  (
f `  k )  e.  U. K ) ) )
5150ralimdva 2872 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  Fn  A )  /\  (
v  e.  U  /\  f  e.  v )
)  ->  ( A. k  e.  A  (
f `  k )  e.  ( U. ( F `
 k )  \  U. K )  ->  A. k  e.  A  ( E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u )  -> 
( f `  k
)  e.  U. K
) ) )
5251ex 434 . . . . . . . . 9  |-  ( (
ph  /\  f  Fn  A )  ->  (
( v  e.  U  /\  f  e.  v
)  ->  ( A. k  e.  A  (
f `  k )  e.  ( U. ( F `
 k )  \  U. K )  ->  A. k  e.  A  ( E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u )  -> 
( f `  k
)  e.  U. K
) ) ) )
5352com23 78 . . . . . . . 8  |-  ( (
ph  /\  f  Fn  A )  ->  ( A. k  e.  A  ( f `  k
)  e.  ( U. ( F `  k ) 
\  U. K )  -> 
( ( v  e.  U  /\  f  e.  v )  ->  A. k  e.  A  ( E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u )  -> 
( f `  k
)  e.  U. K
) ) ) )
5453impr 619 . . . . . . 7  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  ( ( v  e.  U  /\  f  e.  v )  ->  A. k  e.  A  ( E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u )  -> 
( f `  k
)  e.  U. K
) ) )
5554imp 429 . . . . . 6  |-  ( ( ( ph  /\  (
f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  /\  ( v  e.  U  /\  f  e.  v ) )  ->  A. k  e.  A  ( E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
)  ->  ( f `  k )  e.  U. K ) )
566adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  U  C_  ran  S )
5756sselda 3504 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  /\  v  e.  U )  ->  v  e.  ran  S )
5857adantrr 716 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  /\  ( v  e.  U  /\  f  e.  v ) )  -> 
v  e.  ran  S
)
591rnmpt2 6394 . . . . . . . 8  |-  ran  S  =  { v  |  E. k  e.  A  E. u  e.  ( F `  k ) v  =  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) }
6058, 59syl6eleq 2565 . . . . . . 7  |-  ( ( ( ph  /\  (
f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  /\  ( v  e.  U  /\  f  e.  v ) )  -> 
v  e.  { v  |  E. k  e.  A  E. u  e.  ( F `  k
) v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) "
u ) } )
61 abid 2454 . . . . . . 7  |-  ( v  e.  { v  |  E. k  e.  A  E. u  e.  ( F `  k )
v  =  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
) }  <->  E. k  e.  A  E. u  e.  ( F `  k
) v  =  ( `' ( w  e.  X  |->  ( w `  k ) ) "
u ) )
6260, 61sylib 196 . . . . . 6  |-  ( ( ( ph  /\  (
f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  /\  ( v  e.  U  /\  f  e.  v ) )  ->  E. k  e.  A  E. u  e.  ( F `  k )
v  =  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
) )
63 rexim 2929 . . . . . 6  |-  ( A. k  e.  A  ( E. u  e.  ( F `  k )
v  =  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
)  ->  ( f `  k )  e.  U. K )  ->  ( E. k  e.  A  E. u  e.  ( F `  k )
v  =  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
)  ->  E. k  e.  A  ( f `  k )  e.  U. K ) )
6455, 62, 63sylc 60 . . . . 5  |-  ( ( ( ph  /\  (
f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  /\  ( v  e.  U  /\  f  e.  v ) )  ->  E. k  e.  A  ( f `  k
)  e.  U. K
)
6528, 64rexlimddv 2959 . . . 4  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  E. k  e.  A  ( f `  k
)  e.  U. K
)
66 eldifn 3627 . . . . . . 7  |-  ( ( f `  k )  e.  ( U. ( F `  k )  \  U. K )  ->  -.  ( f `  k
)  e.  U. K
)
6766ralimi 2857 . . . . . 6  |-  ( A. k  e.  A  (
f `  k )  e.  ( U. ( F `
 k )  \  U. K )  ->  A. k  e.  A  -.  (
f `  k )  e.  U. K )
6867ad2antll 728 . . . . 5  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  A. k  e.  A  -.  ( f `  k
)  e.  U. K
)
69 ralnex 2910 . . . . 5  |-  ( A. k  e.  A  -.  ( f `  k
)  e.  U. K  <->  -. 
E. k  e.  A  ( f `  k
)  e.  U. K
)
7068, 69sylib 196 . . . 4  |-  ( (
ph  /\  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )  ->  -.  E. k  e.  A  ( f `  k )  e.  U. K )
7165, 70pm2.65da 576 . . 3  |-  ( ph  ->  -.  ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )
7271nexdv 1832 . 2  |-  ( ph  ->  -.  E. f ( f  Fn  A  /\  A. k  e.  A  ( f `  k )  e.  ( U. ( F `  k )  \  U. K ) ) )
7310, 72pm2.65i 173 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767   {cab 2452   A.wral 2814   E.wrex 2815   {crab 2818    \ cdif 3473    i^i cin 3475    C_ wss 3476   ~Pcpw 4010   U.cuni 4245    |-> cmpt 4505   `'ccnv 4998   dom cdm 4999   ran crn 5000   "cima 5002    Fn wfn 5581   -->wf 5582   ` cfv 5586    |-> cmpt2 6284   X_cixp 7466   Fincfn 7513   cardccrd 8312   Compccmp 19652  UFLcufl 20136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-omul 7132  df-er 7308  df-map 7419  df-ixp 7467  df-en 7514  df-dom 7515  df-fin 7517  df-wdom 7981  df-card 8316  df-acn 8319  df-cmp 19653
This theorem is referenced by:  ptcmplem5  20291
  Copyright terms: Public domain W3C validator