MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmpfi Structured version   Unicode version

Theorem ptcmpfi 19511
Description: A topological product of finitely many compact spaces is compact. This weak version of Tychonoff's theorem does not require the axiom of choice. (Contributed by Mario Carneiro, 8-Feb-2015.)
Assertion
Ref Expression
ptcmpfi  |-  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  F
)  e.  Comp )

Proof of Theorem ptcmpfi
Dummy variables  v  u  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 5660 . . . . 5  |-  ( F : A --> Comp  ->  F  Fn  A )
2 fnresdm 5621 . . . . 5  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
31, 2syl 16 . . . 4  |-  ( F : A --> Comp  ->  ( F  |`  A )  =  F )
43adantl 466 . . 3  |-  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( F  |`  A )  =  F )
54fveq2d 5796 . 2  |-  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  A ) )  =  ( Xt_ `  F
) )
6 ssid 3476 . . . 4  |-  A  C_  A
7 sseq1 3478 . . . . . 6  |-  ( x  =  (/)  ->  ( x 
C_  A  <->  (/)  C_  A
) )
8 reseq2 5206 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( F  |`  x )  =  ( F  |`  (/) ) )
9 res0 5216 . . . . . . . . . 10  |-  ( F  |`  (/) )  =  (/)
108, 9syl6eq 2508 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( F  |`  x )  =  (/) )
1110fveq2d 5796 . . . . . . . 8  |-  ( x  =  (/)  ->  ( Xt_ `  ( F  |`  x
) )  =  (
Xt_ `  (/) ) )
1211eleq1d 2520 . . . . . . 7  |-  ( x  =  (/)  ->  ( (
Xt_ `  ( F  |`  x ) )  e. 
Comp 
<->  ( Xt_ `  (/) )  e. 
Comp ) )
1312imbi2d 316 . . . . . 6  |-  ( x  =  (/)  ->  ( ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e.  Comp )  <->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  (/) )  e.  Comp ) ) )
147, 13imbi12d 320 . . . . 5  |-  ( x  =  (/)  ->  ( ( x  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e.  Comp ) )  <->  ( (/)  C_  A  ->  ( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  (/) )  e.  Comp ) ) ) )
15 sseq1 3478 . . . . . 6  |-  ( x  =  y  ->  (
x  C_  A  <->  y  C_  A ) )
16 reseq2 5206 . . . . . . . . 9  |-  ( x  =  y  ->  ( F  |`  x )  =  ( F  |`  y
) )
1716fveq2d 5796 . . . . . . . 8  |-  ( x  =  y  ->  ( Xt_ `  ( F  |`  x ) )  =  ( Xt_ `  ( F  |`  y ) ) )
1817eleq1d 2520 . . . . . . 7  |-  ( x  =  y  ->  (
( Xt_ `  ( F  |`  x ) )  e. 
Comp 
<->  ( Xt_ `  ( F  |`  y ) )  e.  Comp ) )
1918imbi2d 316 . . . . . 6  |-  ( x  =  y  ->  (
( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e. 
Comp )  <->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e. 
Comp ) ) )
2015, 19imbi12d 320 . . . . 5  |-  ( x  =  y  ->  (
( x  C_  A  ->  ( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e. 
Comp ) )  <->  ( y  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e. 
Comp ) ) ) )
21 sseq1 3478 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( x  C_  A 
<->  ( y  u.  {
z } )  C_  A ) )
22 reseq2 5206 . . . . . . . . 9  |-  ( x  =  ( y  u. 
{ z } )  ->  ( F  |`  x )  =  ( F  |`  ( y  u.  { z } ) ) )
2322fveq2d 5796 . . . . . . . 8  |-  ( x  =  ( y  u. 
{ z } )  ->  ( Xt_ `  ( F  |`  x ) )  =  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) ) )
2423eleq1d 2520 . . . . . . 7  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( Xt_ `  ( F  |`  x
) )  e.  Comp  <->  ( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) )  e.  Comp )
)
2524imbi2d 316 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e.  Comp )  <->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) )  e.  Comp )
) )
2621, 25imbi12d 320 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( x 
C_  A  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e.  Comp ) )  <->  ( (
y  u.  { z } )  C_  A  ->  ( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) )  e.  Comp )
) ) )
27 sseq1 3478 . . . . . 6  |-  ( x  =  A  ->  (
x  C_  A  <->  A  C_  A
) )
28 reseq2 5206 . . . . . . . . 9  |-  ( x  =  A  ->  ( F  |`  x )  =  ( F  |`  A ) )
2928fveq2d 5796 . . . . . . . 8  |-  ( x  =  A  ->  ( Xt_ `  ( F  |`  x ) )  =  ( Xt_ `  ( F  |`  A ) ) )
3029eleq1d 2520 . . . . . . 7  |-  ( x  =  A  ->  (
( Xt_ `  ( F  |`  x ) )  e. 
Comp 
<->  ( Xt_ `  ( F  |`  A ) )  e.  Comp ) )
3130imbi2d 316 . . . . . 6  |-  ( x  =  A  ->  (
( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e. 
Comp )  <->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  A ) )  e. 
Comp ) ) )
3227, 31imbi12d 320 . . . . 5  |-  ( x  =  A  ->  (
( x  C_  A  ->  ( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e. 
Comp ) )  <->  ( A  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  A ) )  e. 
Comp ) ) ) )
33 0ex 4523 . . . . . . . . 9  |-  (/)  e.  _V
34 f0 5693 . . . . . . . . 9  |-  (/) : (/) --> Top
35 pttop 19280 . . . . . . . . 9  |-  ( (
(/)  e.  _V  /\  (/) : (/) --> Top )  ->  ( Xt_ `  (/) )  e.  Top )
3633, 34, 35mp2an 672 . . . . . . . 8  |-  ( Xt_ `  (/) )  e.  Top
37 eqid 2451 . . . . . . . . . . . . 13  |-  ( Xt_ `  (/) )  =  ( Xt_ `  (/) )
3837ptuni 19292 . . . . . . . . . . . 12  |-  ( (
(/)  e.  _V  /\  (/) : (/) --> Top )  ->  X_ x  e.  (/)  U. ( (/) `  x
)  =  U. ( Xt_ `  (/) ) )
3933, 34, 38mp2an 672 . . . . . . . . . . 11  |-  X_ x  e.  (/)  U. ( (/) `  x )  =  U. ( Xt_ `  (/) )
40 ixp0x 7394 . . . . . . . . . . . 12  |-  X_ x  e.  (/)  U. ( (/) `  x )  =  { (/)
}
41 snfi 7493 . . . . . . . . . . . 12  |-  { (/) }  e.  Fin
4240, 41eqeltri 2535 . . . . . . . . . . 11  |-  X_ x  e.  (/)  U. ( (/) `  x )  e.  Fin
4339, 42eqeltrri 2536 . . . . . . . . . 10  |-  U. ( Xt_ `  (/) )  e.  Fin
44 pwfi 7710 . . . . . . . . . 10  |-  ( U. ( Xt_ `  (/) )  e. 
Fin 
<->  ~P U. ( Xt_ `  (/) )  e.  Fin )
4543, 44mpbi 208 . . . . . . . . 9  |-  ~P U. ( Xt_ `  (/) )  e. 
Fin
46 pwuni 4624 . . . . . . . . 9  |-  ( Xt_ `  (/) )  C_  ~P U. ( Xt_ `  (/) )
47 ssfi 7637 . . . . . . . . 9  |-  ( ( ~P U. ( Xt_ `  (/) )  e.  Fin  /\  ( Xt_ `  (/) )  C_  ~P U. ( Xt_ `  (/) ) )  ->  ( Xt_ `  (/) )  e. 
Fin )
4845, 46, 47mp2an 672 . . . . . . . 8  |-  ( Xt_ `  (/) )  e.  Fin
49 elin 3640 . . . . . . . 8  |-  ( (
Xt_ `  (/) )  e.  ( Top  i^i  Fin ) 
<->  ( ( Xt_ `  (/) )  e. 
Top  /\  ( Xt_ `  (/) )  e.  Fin ) )
5036, 48, 49mpbir2an 911 . . . . . . 7  |-  ( Xt_ `  (/) )  e.  ( Top  i^i  Fin )
51 fincmp 19121 . . . . . . 7  |-  ( (
Xt_ `  (/) )  e.  ( Top  i^i  Fin )  ->  ( Xt_ `  (/) )  e. 
Comp )
5250, 51ax-mp 5 . . . . . 6  |-  ( Xt_ `  (/) )  e.  Comp
5352a1ii 27 . . . . 5  |-  ( (/)  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  (/) )  e.  Comp ) )
54 ssun1 3620 . . . . . . . . 9  |-  y  C_  ( y  u.  {
z } )
55 id 22 . . . . . . . . 9  |-  ( ( y  u.  { z } )  C_  A  ->  ( y  u.  {
z } )  C_  A )
5654, 55syl5ss 3468 . . . . . . . 8  |-  ( ( y  u.  { z } )  C_  A  ->  y  C_  A )
5756imim1i 58 . . . . . . 7  |-  ( ( y  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e.  Comp ) )  -> 
( ( y  u. 
{ z } ) 
C_  A  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e.  Comp ) ) )
58 eqid 2451 . . . . . . . . . . . . . 14  |-  U. ( Xt_ `  ( F  |`  y ) )  = 
U. ( Xt_ `  ( F  |`  y ) )
59 eqid 2451 . . . . . . . . . . . . . 14  |-  U. ( Xt_ `  ( F  |`  { z } ) )  =  U. ( Xt_ `  ( F  |`  { z } ) )
60 eqid 2451 . . . . . . . . . . . . . 14  |-  ( Xt_ `  ( F  |`  (
y  u.  { z } ) ) )  =  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )
61 resabs1 5240 . . . . . . . . . . . . . . . . 17  |-  ( y 
C_  ( y  u. 
{ z } )  ->  ( ( F  |`  ( y  u.  {
z } ) )  |`  y )  =  ( F  |`  y )
)
6254, 61ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( ( F  |`  ( y  u.  { z } ) )  |`  y )  =  ( F  |`  y )
6362eqcomi 2464 . . . . . . . . . . . . . . 15  |-  ( F  |`  y )  =  ( ( F  |`  (
y  u.  { z } ) )  |`  y )
6463fveq2i 5795 . . . . . . . . . . . . . 14  |-  ( Xt_ `  ( F  |`  y
) )  =  (
Xt_ `  ( ( F  |`  ( y  u. 
{ z } ) )  |`  y )
)
65 ssun2 3621 . . . . . . . . . . . . . . . . 17  |-  { z }  C_  ( y  u.  { z } )
66 resabs1 5240 . . . . . . . . . . . . . . . . 17  |-  ( { z }  C_  (
y  u.  { z } )  ->  (
( F  |`  (
y  u.  { z } ) )  |`  { z } )  =  ( F  |`  { z } ) )
6765, 66ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( ( F  |`  ( y  u.  { z } ) )  |`  { z } )  =  ( F  |`  { z } )
6867eqcomi 2464 . . . . . . . . . . . . . . 15  |-  ( F  |`  { z } )  =  ( ( F  |`  ( y  u.  {
z } ) )  |`  { z } )
6968fveq2i 5795 . . . . . . . . . . . . . 14  |-  ( Xt_ `  ( F  |`  { z } ) )  =  ( Xt_ `  (
( F  |`  (
y  u.  { z } ) )  |`  { z } ) )
70 eqid 2451 . . . . . . . . . . . . . 14  |-  ( u  e.  U. ( Xt_ `  ( F  |`  y
) ) ,  v  e.  U. ( Xt_ `  ( F  |`  { z } ) )  |->  ( u  u.  v ) )  =  ( u  e.  U. ( Xt_ `  ( F  |`  y
) ) ,  v  e.  U. ( Xt_ `  ( F  |`  { z } ) )  |->  ( u  u.  v ) )
71 vex 3074 . . . . . . . . . . . . . . . 16  |-  y  e. 
_V
72 snex 4634 . . . . . . . . . . . . . . . 16  |-  { z }  e.  _V
7371, 72unex 6481 . . . . . . . . . . . . . . 15  |-  ( y  u.  { z } )  e.  _V
7473a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( y  u.  { z } )  e.  _V )
75 simplr 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  F : A
--> Comp )
76 cmptop 19123 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  Comp  ->  x  e. 
Top )
7776ssriv 3461 . . . . . . . . . . . . . . . 16  |-  Comp  C_  Top
78 fss 5668 . . . . . . . . . . . . . . . 16  |-  ( ( F : A --> Comp  /\  Comp  C_ 
Top )  ->  F : A --> Top )
7975, 77, 78sylancl 662 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  F : A
--> Top )
80 simprr 756 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( y  u.  { z } ) 
C_  A )
81 fssres 5679 . . . . . . . . . . . . . . 15  |-  ( ( F : A --> Top  /\  ( y  u.  {
z } )  C_  A )  ->  ( F  |`  ( y  u. 
{ z } ) ) : ( y  u.  { z } ) --> Top )
8279, 80, 81syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( F  |`  ( y  u.  {
z } ) ) : ( y  u. 
{ z } ) --> Top )
83 eqidd 2452 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( y  u.  { z } )  =  ( y  u. 
{ z } ) )
84 simprl 755 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  -.  z  e.  y )
85 disjsn 4037 . . . . . . . . . . . . . . 15  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
8684, 85sylibr 212 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( y  i^i  { z } )  =  (/) )
8758, 59, 60, 64, 69, 70, 74, 82, 83, 86ptunhmeo 19506 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( u  e.  U. ( Xt_ `  ( F  |`  y ) ) ,  v  e.  U. ( Xt_ `  ( F  |`  { z } ) )  |->  ( u  u.  v ) )  e.  ( ( ( Xt_ `  ( F  |`  y
) )  tX  ( Xt_ `  ( F  |`  { z } ) ) ) Homeo ( Xt_ `  ( F  |`  (
y  u.  { z } ) ) ) ) )
88 hmphi 19475 . . . . . . . . . . . . 13  |-  ( ( u  e.  U. ( Xt_ `  ( F  |`  y ) ) ,  v  e.  U. ( Xt_ `  ( F  |`  { z } ) )  |->  ( u  u.  v ) )  e.  ( ( ( Xt_ `  ( F  |`  y
) )  tX  ( Xt_ `  ( F  |`  { z } ) ) ) Homeo ( Xt_ `  ( F  |`  (
y  u.  { z } ) ) ) )  ->  ( ( Xt_ `  ( F  |`  y ) )  tX  ( Xt_ `  ( F  |`  { z } ) ) )  ~=  ( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) ) )
8987, 88syl 16 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( ( Xt_ `  ( F  |`  y ) )  tX  ( Xt_ `  ( F  |`  { z } ) ) )  ~=  ( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) ) )
901ad2antlr 726 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  F  Fn  A )
9165, 80syl5ss 3468 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  { z }  C_  A )
92 vex 3074 . . . . . . . . . . . . . . . . . 18  |-  z  e. 
_V
9392snss 4100 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  A  <->  { z }  C_  A )
9491, 93sylibr 212 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  z  e.  A )
95 fnressn 5996 . . . . . . . . . . . . . . . 16  |-  ( ( F  Fn  A  /\  z  e.  A )  ->  ( F  |`  { z } )  =  { <. z ,  ( F `
 z ) >. } )
9690, 94, 95syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( F  |` 
{ z } )  =  { <. z ,  ( F `  z ) >. } )
9796fveq2d 5796 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( Xt_ `  ( F  |`  { z } ) )  =  ( Xt_ `  { <. z ,  ( F `
 z ) >. } ) )
98 eqid 2451 . . . . . . . . . . . . . . . . 17  |-  ( Xt_ `  { <. z ,  ( F `  z )
>. } )  =  (
Xt_ `  { <. z ,  ( F `  z ) >. } )
9992a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  z  e.  _V )
10075, 94ffvelrnd 5946 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( F `  z )  e.  Comp )
10177, 100sseldi 3455 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( F `  z )  e.  Top )
102 eqid 2451 . . . . . . . . . . . . . . . . . . 19  |-  U. ( F `  z )  =  U. ( F `  z )
103102toptopon 18663 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  z )  e.  Top  <->  ( F `  z )  e.  (TopOn `  U. ( F `  z ) ) )
104101, 103sylib 196 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( F `  z )  e.  (TopOn `  U. ( F `  z ) ) )
10598, 99, 104pt1hmeo 19504 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( x  e.  U. ( F `  z )  |->  { <. z ,  x >. } )  e.  ( ( F `
 z ) Homeo (
Xt_ `  { <. z ,  ( F `  z ) >. } ) ) )
106 hmphi 19475 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  U. ( F `  z )  |->  { <. z ,  x >. } )  e.  ( ( F `  z
) Homeo ( Xt_ `  { <. z ,  ( F `
 z ) >. } ) )  -> 
( F `  z
)  ~=  ( Xt_ `  { <. z ,  ( F `  z )
>. } ) )
107105, 106syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( F `  z )  ~=  ( Xt_ `  { <. z ,  ( F `  z ) >. } ) )
108 cmphmph 19486 . . . . . . . . . . . . . . 15  |-  ( ( F `  z )  ~=  ( Xt_ `  { <. z ,  ( F `
 z ) >. } )  ->  (
( F `  z
)  e.  Comp  ->  (
Xt_ `  { <. z ,  ( F `  z ) >. } )  e.  Comp ) )
109107, 100, 108sylc 60 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( Xt_ `  { <. z ,  ( F `  z )
>. } )  e.  Comp )
11097, 109eqeltrd 2539 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( Xt_ `  ( F  |`  { z } ) )  e. 
Comp )
111 txcmp 19341 . . . . . . . . . . . . . 14  |-  ( ( ( Xt_ `  ( F  |`  y ) )  e.  Comp  /\  ( Xt_ `  ( F  |`  { z } ) )  e.  Comp )  ->  ( ( Xt_ `  ( F  |`  y ) ) 
tX  ( Xt_ `  ( F  |`  { z } ) ) )  e. 
Comp )
112111expcom 435 . . . . . . . . . . . . 13  |-  ( (
Xt_ `  ( F  |` 
{ z } ) )  e.  Comp  ->  ( ( Xt_ `  ( F  |`  y ) )  e.  Comp  ->  ( (
Xt_ `  ( F  |`  y ) )  tX  ( Xt_ `  ( F  |`  { z } ) ) )  e.  Comp ) )
113110, 112syl 16 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( ( Xt_ `  ( F  |`  y ) )  e. 
Comp  ->  ( ( Xt_ `  ( F  |`  y
) )  tX  ( Xt_ `  ( F  |`  { z } ) ) )  e.  Comp ) )
114 cmphmph 19486 . . . . . . . . . . . 12  |-  ( ( ( Xt_ `  ( F  |`  y ) ) 
tX  ( Xt_ `  ( F  |`  { z } ) ) )  ~=  ( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) )  ->  ( (
( Xt_ `  ( F  |`  y ) )  tX  ( Xt_ `  ( F  |`  { z } ) ) )  e.  Comp  -> 
( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) )  e.  Comp )
)
11589, 113, 114sylsyld 56 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( ( Xt_ `  ( F  |`  y ) )  e. 
Comp  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) )
116115expcom 435 . . . . . . . . . 10  |-  ( ( -.  z  e.  y  /\  ( y  u. 
{ z } ) 
C_  A )  -> 
( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  (
( Xt_ `  ( F  |`  y ) )  e. 
Comp  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) ) )
117116a2d 26 . . . . . . . . 9  |-  ( ( -.  z  e.  y  /\  ( y  u. 
{ z } ) 
C_  A )  -> 
( ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e. 
Comp )  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) ) )
118117ex 434 . . . . . . . 8  |-  ( -.  z  e.  y  -> 
( ( y  u. 
{ z } ) 
C_  A  ->  (
( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e. 
Comp )  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) ) ) )
119118a2d 26 . . . . . . 7  |-  ( -.  z  e.  y  -> 
( ( ( y  u.  { z } )  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e.  Comp ) )  -> 
( ( y  u. 
{ z } ) 
C_  A  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) ) ) )
12057, 119syl5 32 . . . . . 6  |-  ( -.  z  e.  y  -> 
( ( y  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e. 
Comp ) )  -> 
( ( y  u. 
{ z } ) 
C_  A  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) ) ) )
121120adantl 466 . . . . 5  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( (
y  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e.  Comp ) )  -> 
( ( y  u. 
{ z } ) 
C_  A  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) ) ) )
12214, 20, 26, 32, 53, 121findcard2s 7657 . . . 4  |-  ( A  e.  Fin  ->  ( A  C_  A  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  A ) )  e.  Comp ) ) )
1236, 122mpi 17 . . 3  |-  ( A  e.  Fin  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  A ) )  e.  Comp ) )
124123anabsi5 813 . 2  |-  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  A ) )  e.  Comp )
1255, 124eqeltrrd 2540 1  |-  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  F
)  e.  Comp )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3071    u. cun 3427    i^i cin 3428    C_ wss 3429   (/)c0 3738   ~Pcpw 3961   {csn 3978   <.cop 3984   U.cuni 4192   class class class wbr 4393    |-> cmpt 4451    |` cres 4943    Fn wfn 5514   -->wf 5515   ` cfv 5519  (class class class)co 6193    |-> cmpt2 6195   X_cixp 7366   Fincfn 7413   Xt_cpt 14488   Topctop 18623  TopOnctopon 18624   Compccmp 19114    tX ctx 19258   Homeochmeo 19451    ~= chmph 19452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-iin 4275  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-1st 6680  df-2nd 6681  df-recs 6935  df-rdg 6969  df-1o 7023  df-2o 7024  df-oadd 7027  df-er 7204  df-map 7319  df-ixp 7367  df-en 7414  df-dom 7415  df-sdom 7416  df-fin 7417  df-fi 7765  df-topgen 14493  df-pt 14494  df-top 18628  df-bases 18630  df-topon 18631  df-cn 18956  df-cnp 18957  df-cmp 19115  df-tx 19260  df-hmeo 19453  df-hmph 19454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator