MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmpfi Structured version   Unicode version

Theorem ptcmpfi 20604
Description: A topological product of finitely many compact spaces is compact. This weak version of Tychonoff's theorem does not require the axiom of choice. (Contributed by Mario Carneiro, 8-Feb-2015.)
Assertion
Ref Expression
ptcmpfi  |-  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  F
)  e.  Comp )

Proof of Theorem ptcmpfi
Dummy variables  v  u  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 5713 . . . . 5  |-  ( F : A --> Comp  ->  F  Fn  A )
2 fnresdm 5670 . . . . 5  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
31, 2syl 17 . . . 4  |-  ( F : A --> Comp  ->  ( F  |`  A )  =  F )
43adantl 464 . . 3  |-  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( F  |`  A )  =  F )
54fveq2d 5852 . 2  |-  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  A ) )  =  ( Xt_ `  F
) )
6 ssid 3460 . . . 4  |-  A  C_  A
7 sseq1 3462 . . . . . 6  |-  ( x  =  (/)  ->  ( x 
C_  A  <->  (/)  C_  A
) )
8 reseq2 5088 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( F  |`  x )  =  ( F  |`  (/) ) )
9 res0 5097 . . . . . . . . . 10  |-  ( F  |`  (/) )  =  (/)
108, 9syl6eq 2459 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( F  |`  x )  =  (/) )
1110fveq2d 5852 . . . . . . . 8  |-  ( x  =  (/)  ->  ( Xt_ `  ( F  |`  x
) )  =  (
Xt_ `  (/) ) )
1211eleq1d 2471 . . . . . . 7  |-  ( x  =  (/)  ->  ( (
Xt_ `  ( F  |`  x ) )  e. 
Comp 
<->  ( Xt_ `  (/) )  e. 
Comp ) )
1312imbi2d 314 . . . . . 6  |-  ( x  =  (/)  ->  ( ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e.  Comp )  <->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  (/) )  e.  Comp ) ) )
147, 13imbi12d 318 . . . . 5  |-  ( x  =  (/)  ->  ( ( x  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e.  Comp ) )  <->  ( (/)  C_  A  ->  ( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  (/) )  e.  Comp ) ) ) )
15 sseq1 3462 . . . . . 6  |-  ( x  =  y  ->  (
x  C_  A  <->  y  C_  A ) )
16 reseq2 5088 . . . . . . . . 9  |-  ( x  =  y  ->  ( F  |`  x )  =  ( F  |`  y
) )
1716fveq2d 5852 . . . . . . . 8  |-  ( x  =  y  ->  ( Xt_ `  ( F  |`  x ) )  =  ( Xt_ `  ( F  |`  y ) ) )
1817eleq1d 2471 . . . . . . 7  |-  ( x  =  y  ->  (
( Xt_ `  ( F  |`  x ) )  e. 
Comp 
<->  ( Xt_ `  ( F  |`  y ) )  e.  Comp ) )
1918imbi2d 314 . . . . . 6  |-  ( x  =  y  ->  (
( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e. 
Comp )  <->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e. 
Comp ) ) )
2015, 19imbi12d 318 . . . . 5  |-  ( x  =  y  ->  (
( x  C_  A  ->  ( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e. 
Comp ) )  <->  ( y  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e. 
Comp ) ) ) )
21 sseq1 3462 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( x  C_  A 
<->  ( y  u.  {
z } )  C_  A ) )
22 reseq2 5088 . . . . . . . . 9  |-  ( x  =  ( y  u. 
{ z } )  ->  ( F  |`  x )  =  ( F  |`  ( y  u.  { z } ) ) )
2322fveq2d 5852 . . . . . . . 8  |-  ( x  =  ( y  u. 
{ z } )  ->  ( Xt_ `  ( F  |`  x ) )  =  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) ) )
2423eleq1d 2471 . . . . . . 7  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( Xt_ `  ( F  |`  x
) )  e.  Comp  <->  ( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) )  e.  Comp )
)
2524imbi2d 314 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e.  Comp )  <->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) )  e.  Comp )
) )
2621, 25imbi12d 318 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( x 
C_  A  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e.  Comp ) )  <->  ( (
y  u.  { z } )  C_  A  ->  ( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) )  e.  Comp )
) ) )
27 sseq1 3462 . . . . . 6  |-  ( x  =  A  ->  (
x  C_  A  <->  A  C_  A
) )
28 reseq2 5088 . . . . . . . . 9  |-  ( x  =  A  ->  ( F  |`  x )  =  ( F  |`  A ) )
2928fveq2d 5852 . . . . . . . 8  |-  ( x  =  A  ->  ( Xt_ `  ( F  |`  x ) )  =  ( Xt_ `  ( F  |`  A ) ) )
3029eleq1d 2471 . . . . . . 7  |-  ( x  =  A  ->  (
( Xt_ `  ( F  |`  x ) )  e. 
Comp 
<->  ( Xt_ `  ( F  |`  A ) )  e.  Comp ) )
3130imbi2d 314 . . . . . 6  |-  ( x  =  A  ->  (
( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e. 
Comp )  <->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  A ) )  e. 
Comp ) ) )
3227, 31imbi12d 318 . . . . 5  |-  ( x  =  A  ->  (
( x  C_  A  ->  ( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e. 
Comp ) )  <->  ( A  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  A ) )  e. 
Comp ) ) ) )
33 0ex 4525 . . . . . . . . 9  |-  (/)  e.  _V
34 f0 5748 . . . . . . . . 9  |-  (/) : (/) --> Top
35 pttop 20373 . . . . . . . . 9  |-  ( (
(/)  e.  _V  /\  (/) : (/) --> Top )  ->  ( Xt_ `  (/) )  e.  Top )
3633, 34, 35mp2an 670 . . . . . . . 8  |-  ( Xt_ `  (/) )  e.  Top
37 eqid 2402 . . . . . . . . . . . . 13  |-  ( Xt_ `  (/) )  =  ( Xt_ `  (/) )
3837ptuni 20385 . . . . . . . . . . . 12  |-  ( (
(/)  e.  _V  /\  (/) : (/) --> Top )  ->  X_ x  e.  (/)  U. ( (/) `  x
)  =  U. ( Xt_ `  (/) ) )
3933, 34, 38mp2an 670 . . . . . . . . . . 11  |-  X_ x  e.  (/)  U. ( (/) `  x )  =  U. ( Xt_ `  (/) )
40 ixp0x 7534 . . . . . . . . . . . 12  |-  X_ x  e.  (/)  U. ( (/) `  x )  =  { (/)
}
41 snfi 7633 . . . . . . . . . . . 12  |-  { (/) }  e.  Fin
4240, 41eqeltri 2486 . . . . . . . . . . 11  |-  X_ x  e.  (/)  U. ( (/) `  x )  e.  Fin
4339, 42eqeltrri 2487 . . . . . . . . . 10  |-  U. ( Xt_ `  (/) )  e.  Fin
44 pwfi 7848 . . . . . . . . . 10  |-  ( U. ( Xt_ `  (/) )  e. 
Fin 
<->  ~P U. ( Xt_ `  (/) )  e.  Fin )
4543, 44mpbi 208 . . . . . . . . 9  |-  ~P U. ( Xt_ `  (/) )  e. 
Fin
46 pwuni 4621 . . . . . . . . 9  |-  ( Xt_ `  (/) )  C_  ~P U. ( Xt_ `  (/) )
47 ssfi 7774 . . . . . . . . 9  |-  ( ( ~P U. ( Xt_ `  (/) )  e.  Fin  /\  ( Xt_ `  (/) )  C_  ~P U. ( Xt_ `  (/) ) )  ->  ( Xt_ `  (/) )  e. 
Fin )
4845, 46, 47mp2an 670 . . . . . . . 8  |-  ( Xt_ `  (/) )  e.  Fin
49 elin 3625 . . . . . . . 8  |-  ( (
Xt_ `  (/) )  e.  ( Top  i^i  Fin ) 
<->  ( ( Xt_ `  (/) )  e. 
Top  /\  ( Xt_ `  (/) )  e.  Fin ) )
5036, 48, 49mpbir2an 921 . . . . . . 7  |-  ( Xt_ `  (/) )  e.  ( Top  i^i  Fin )
51 fincmp 20184 . . . . . . 7  |-  ( (
Xt_ `  (/) )  e.  ( Top  i^i  Fin )  ->  ( Xt_ `  (/) )  e. 
Comp )
5250, 51ax-mp 5 . . . . . 6  |-  ( Xt_ `  (/) )  e.  Comp
5352a1ii 12 . . . . 5  |-  ( (/)  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  (/) )  e.  Comp ) )
54 ssun1 3605 . . . . . . . . 9  |-  y  C_  ( y  u.  {
z } )
55 id 22 . . . . . . . . 9  |-  ( ( y  u.  { z } )  C_  A  ->  ( y  u.  {
z } )  C_  A )
5654, 55syl5ss 3452 . . . . . . . 8  |-  ( ( y  u.  { z } )  C_  A  ->  y  C_  A )
5756imim1i 57 . . . . . . 7  |-  ( ( y  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e.  Comp ) )  -> 
( ( y  u. 
{ z } ) 
C_  A  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e.  Comp ) ) )
58 eqid 2402 . . . . . . . . . . . . . 14  |-  U. ( Xt_ `  ( F  |`  y ) )  = 
U. ( Xt_ `  ( F  |`  y ) )
59 eqid 2402 . . . . . . . . . . . . . 14  |-  U. ( Xt_ `  ( F  |`  { z } ) )  =  U. ( Xt_ `  ( F  |`  { z } ) )
60 eqid 2402 . . . . . . . . . . . . . 14  |-  ( Xt_ `  ( F  |`  (
y  u.  { z } ) ) )  =  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )
61 resabs1 5121 . . . . . . . . . . . . . . . . 17  |-  ( y 
C_  ( y  u. 
{ z } )  ->  ( ( F  |`  ( y  u.  {
z } ) )  |`  y )  =  ( F  |`  y )
)
6254, 61ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( ( F  |`  ( y  u.  { z } ) )  |`  y )  =  ( F  |`  y )
6362eqcomi 2415 . . . . . . . . . . . . . . 15  |-  ( F  |`  y )  =  ( ( F  |`  (
y  u.  { z } ) )  |`  y )
6463fveq2i 5851 . . . . . . . . . . . . . 14  |-  ( Xt_ `  ( F  |`  y
) )  =  (
Xt_ `  ( ( F  |`  ( y  u. 
{ z } ) )  |`  y )
)
65 ssun2 3606 . . . . . . . . . . . . . . . . 17  |-  { z }  C_  ( y  u.  { z } )
66 resabs1 5121 . . . . . . . . . . . . . . . . 17  |-  ( { z }  C_  (
y  u.  { z } )  ->  (
( F  |`  (
y  u.  { z } ) )  |`  { z } )  =  ( F  |`  { z } ) )
6765, 66ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( ( F  |`  ( y  u.  { z } ) )  |`  { z } )  =  ( F  |`  { z } )
6867eqcomi 2415 . . . . . . . . . . . . . . 15  |-  ( F  |`  { z } )  =  ( ( F  |`  ( y  u.  {
z } ) )  |`  { z } )
6968fveq2i 5851 . . . . . . . . . . . . . 14  |-  ( Xt_ `  ( F  |`  { z } ) )  =  ( Xt_ `  (
( F  |`  (
y  u.  { z } ) )  |`  { z } ) )
70 eqid 2402 . . . . . . . . . . . . . 14  |-  ( u  e.  U. ( Xt_ `  ( F  |`  y
) ) ,  v  e.  U. ( Xt_ `  ( F  |`  { z } ) )  |->  ( u  u.  v ) )  =  ( u  e.  U. ( Xt_ `  ( F  |`  y
) ) ,  v  e.  U. ( Xt_ `  ( F  |`  { z } ) )  |->  ( u  u.  v ) )
71 vex 3061 . . . . . . . . . . . . . . . 16  |-  y  e. 
_V
72 snex 4631 . . . . . . . . . . . . . . . 16  |-  { z }  e.  _V
7371, 72unex 6579 . . . . . . . . . . . . . . 15  |-  ( y  u.  { z } )  e.  _V
7473a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( y  u.  { z } )  e.  _V )
75 simplr 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  F : A
--> Comp )
76 cmptop 20186 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  Comp  ->  x  e. 
Top )
7776ssriv 3445 . . . . . . . . . . . . . . . 16  |-  Comp  C_  Top
78 fss 5721 . . . . . . . . . . . . . . . 16  |-  ( ( F : A --> Comp  /\  Comp  C_ 
Top )  ->  F : A --> Top )
7975, 77, 78sylancl 660 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  F : A
--> Top )
80 simprr 758 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( y  u.  { z } ) 
C_  A )
8179, 80fssresd 5734 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( F  |`  ( y  u.  {
z } ) ) : ( y  u. 
{ z } ) --> Top )
82 eqidd 2403 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( y  u.  { z } )  =  ( y  u. 
{ z } ) )
83 simprl 756 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  -.  z  e.  y )
84 disjsn 4031 . . . . . . . . . . . . . . 15  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
8583, 84sylibr 212 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( y  i^i  { z } )  =  (/) )
8658, 59, 60, 64, 69, 70, 74, 81, 82, 85ptunhmeo 20599 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( u  e.  U. ( Xt_ `  ( F  |`  y ) ) ,  v  e.  U. ( Xt_ `  ( F  |`  { z } ) )  |->  ( u  u.  v ) )  e.  ( ( ( Xt_ `  ( F  |`  y
) )  tX  ( Xt_ `  ( F  |`  { z } ) ) ) Homeo ( Xt_ `  ( F  |`  (
y  u.  { z } ) ) ) ) )
87 hmphi 20568 . . . . . . . . . . . . 13  |-  ( ( u  e.  U. ( Xt_ `  ( F  |`  y ) ) ,  v  e.  U. ( Xt_ `  ( F  |`  { z } ) )  |->  ( u  u.  v ) )  e.  ( ( ( Xt_ `  ( F  |`  y
) )  tX  ( Xt_ `  ( F  |`  { z } ) ) ) Homeo ( Xt_ `  ( F  |`  (
y  u.  { z } ) ) ) )  ->  ( ( Xt_ `  ( F  |`  y ) )  tX  ( Xt_ `  ( F  |`  { z } ) ) )  ~=  ( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) ) )
8886, 87syl 17 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( ( Xt_ `  ( F  |`  y ) )  tX  ( Xt_ `  ( F  |`  { z } ) ) )  ~=  ( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) ) )
891ad2antlr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  F  Fn  A )
9065, 80syl5ss 3452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  { z }  C_  A )
91 vex 3061 . . . . . . . . . . . . . . . . . 18  |-  z  e. 
_V
9291snss 4095 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  A  <->  { z }  C_  A )
9390, 92sylibr 212 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  z  e.  A )
94 fnressn 6062 . . . . . . . . . . . . . . . 16  |-  ( ( F  Fn  A  /\  z  e.  A )  ->  ( F  |`  { z } )  =  { <. z ,  ( F `
 z ) >. } )
9589, 93, 94syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( F  |` 
{ z } )  =  { <. z ,  ( F `  z ) >. } )
9695fveq2d 5852 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( Xt_ `  ( F  |`  { z } ) )  =  ( Xt_ `  { <. z ,  ( F `
 z ) >. } ) )
97 eqid 2402 . . . . . . . . . . . . . . . . 17  |-  ( Xt_ `  { <. z ,  ( F `  z )
>. } )  =  (
Xt_ `  { <. z ,  ( F `  z ) >. } )
9891a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  z  e.  _V )
9975, 93ffvelrnd 6009 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( F `  z )  e.  Comp )
10077, 99sseldi 3439 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( F `  z )  e.  Top )
101 eqid 2402 . . . . . . . . . . . . . . . . . . 19  |-  U. ( F `  z )  =  U. ( F `  z )
102101toptopon 19724 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  z )  e.  Top  <->  ( F `  z )  e.  (TopOn `  U. ( F `  z ) ) )
103100, 102sylib 196 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( F `  z )  e.  (TopOn `  U. ( F `  z ) ) )
10497, 98, 103pt1hmeo 20597 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( x  e.  U. ( F `  z )  |->  { <. z ,  x >. } )  e.  ( ( F `
 z ) Homeo (
Xt_ `  { <. z ,  ( F `  z ) >. } ) ) )
105 hmphi 20568 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  U. ( F `  z )  |->  { <. z ,  x >. } )  e.  ( ( F `  z
) Homeo ( Xt_ `  { <. z ,  ( F `
 z ) >. } ) )  -> 
( F `  z
)  ~=  ( Xt_ `  { <. z ,  ( F `  z )
>. } ) )
106104, 105syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( F `  z )  ~=  ( Xt_ `  { <. z ,  ( F `  z ) >. } ) )
107 cmphmph 20579 . . . . . . . . . . . . . . 15  |-  ( ( F `  z )  ~=  ( Xt_ `  { <. z ,  ( F `
 z ) >. } )  ->  (
( F `  z
)  e.  Comp  ->  (
Xt_ `  { <. z ,  ( F `  z ) >. } )  e.  Comp ) )
108106, 99, 107sylc 59 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( Xt_ `  { <. z ,  ( F `  z )
>. } )  e.  Comp )
10996, 108eqeltrd 2490 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( Xt_ `  ( F  |`  { z } ) )  e. 
Comp )
110 txcmp 20434 . . . . . . . . . . . . . 14  |-  ( ( ( Xt_ `  ( F  |`  y ) )  e.  Comp  /\  ( Xt_ `  ( F  |`  { z } ) )  e.  Comp )  ->  ( ( Xt_ `  ( F  |`  y ) ) 
tX  ( Xt_ `  ( F  |`  { z } ) ) )  e. 
Comp )
111110expcom 433 . . . . . . . . . . . . 13  |-  ( (
Xt_ `  ( F  |` 
{ z } ) )  e.  Comp  ->  ( ( Xt_ `  ( F  |`  y ) )  e.  Comp  ->  ( (
Xt_ `  ( F  |`  y ) )  tX  ( Xt_ `  ( F  |`  { z } ) ) )  e.  Comp ) )
112109, 111syl 17 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( ( Xt_ `  ( F  |`  y ) )  e. 
Comp  ->  ( ( Xt_ `  ( F  |`  y
) )  tX  ( Xt_ `  ( F  |`  { z } ) ) )  e.  Comp ) )
113 cmphmph 20579 . . . . . . . . . . . 12  |-  ( ( ( Xt_ `  ( F  |`  y ) ) 
tX  ( Xt_ `  ( F  |`  { z } ) ) )  ~=  ( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) )  ->  ( (
( Xt_ `  ( F  |`  y ) )  tX  ( Xt_ `  ( F  |`  { z } ) ) )  e.  Comp  -> 
( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) )  e.  Comp )
)
11488, 112, 113sylsyld 55 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( ( Xt_ `  ( F  |`  y ) )  e. 
Comp  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) )
115114expcom 433 . . . . . . . . . 10  |-  ( ( -.  z  e.  y  /\  ( y  u. 
{ z } ) 
C_  A )  -> 
( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  (
( Xt_ `  ( F  |`  y ) )  e. 
Comp  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) ) )
116115a2d 26 . . . . . . . . 9  |-  ( ( -.  z  e.  y  /\  ( y  u. 
{ z } ) 
C_  A )  -> 
( ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e. 
Comp )  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) ) )
117116ex 432 . . . . . . . 8  |-  ( -.  z  e.  y  -> 
( ( y  u. 
{ z } ) 
C_  A  ->  (
( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e. 
Comp )  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) ) ) )
118117a2d 26 . . . . . . 7  |-  ( -.  z  e.  y  -> 
( ( ( y  u.  { z } )  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e.  Comp ) )  -> 
( ( y  u. 
{ z } ) 
C_  A  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) ) ) )
11957, 118syl5 30 . . . . . 6  |-  ( -.  z  e.  y  -> 
( ( y  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e. 
Comp ) )  -> 
( ( y  u. 
{ z } ) 
C_  A  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) ) ) )
120119adantl 464 . . . . 5  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( (
y  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e.  Comp ) )  -> 
( ( y  u. 
{ z } ) 
C_  A  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) ) ) )
12114, 20, 26, 32, 53, 120findcard2s 7794 . . . 4  |-  ( A  e.  Fin  ->  ( A  C_  A  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  A ) )  e.  Comp ) ) )
1226, 121mpi 18 . . 3  |-  ( A  e.  Fin  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  A ) )  e.  Comp ) )
123122anabsi5 818 . 2  |-  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  A ) )  e.  Comp )
1245, 123eqeltrrd 2491 1  |-  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  F
)  e.  Comp )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   _Vcvv 3058    u. cun 3411    i^i cin 3412    C_ wss 3413   (/)c0 3737   ~Pcpw 3954   {csn 3971   <.cop 3977   U.cuni 4190   class class class wbr 4394    |-> cmpt 4452    |` cres 4824    Fn wfn 5563   -->wf 5564   ` cfv 5568  (class class class)co 6277    |-> cmpt2 6279   X_cixp 7506   Fincfn 7553   Xt_cpt 15051   Topctop 19684  TopOnctopon 19685   Compccmp 20177    tX ctx 20351   Homeochmeo 20544    ~= chmph 20545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-iin 4273  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-2o 7167  df-oadd 7170  df-er 7347  df-map 7458  df-ixp 7507  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-fi 7904  df-topgen 15056  df-pt 15057  df-top 19689  df-bases 19691  df-topon 19692  df-cn 20019  df-cnp 20020  df-cmp 20178  df-tx 20353  df-hmeo 20546  df-hmph 20547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator