MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcld Structured version   Unicode version

Theorem ptcld 19191
Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
ptcld.a  |-  ( ph  ->  A  e.  V )
ptcld.f  |-  ( ph  ->  F : A --> Top )
ptcld.c  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  ( Clsd `  ( F `  k )
) )
Assertion
Ref Expression
ptcld  |-  ( ph  -> 
X_ k  e.  A  C  e.  ( Clsd `  ( Xt_ `  F
) ) )
Distinct variable groups:    ph, k    A, k    k, F    k, V
Allowed substitution hint:    C( k)

Proof of Theorem ptcld
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ptcld.c . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  ( Clsd `  ( F `  k )
) )
2 eqid 2443 . . . . . 6  |-  U. ( F `  k )  =  U. ( F `  k )
32cldss 18638 . . . . 5  |-  ( C  e.  ( Clsd `  ( F `  k )
)  ->  C  C_  U. ( F `  k )
)
41, 3syl 16 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  C  C_ 
U. ( F `  k ) )
54ralrimiva 2804 . . 3  |-  ( ph  ->  A. k  e.  A  C  C_  U. ( F `
 k ) )
6 boxriin 7310 . . 3  |-  ( A. k  e.  A  C  C_ 
U. ( F `  k )  ->  X_ k  e.  A  C  =  ( X_ k  e.  A  U. ( F `  k
)  i^i  |^|_ x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) ) )
75, 6syl 16 . 2  |-  ( ph  -> 
X_ k  e.  A  C  =  ( X_ k  e.  A  U. ( F `  k )  i^i  |^|_ x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) ) )
8 ptcld.a . . . . 5  |-  ( ph  ->  A  e.  V )
9 ptcld.f . . . . 5  |-  ( ph  ->  F : A --> Top )
10 eqid 2443 . . . . . 6  |-  ( Xt_ `  F )  =  (
Xt_ `  F )
1110ptuni 19172 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. ( Xt_ `  F ) )
128, 9, 11syl2anc 661 . . . 4  |-  ( ph  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. ( Xt_ `  F ) )
1312ineq1d 3556 . . 3  |-  ( ph  ->  ( X_ k  e.  A  U. ( F `
 k )  i^i  |^|_ x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  =  ( U. ( Xt_ `  F
)  i^i  |^|_ x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) ) )
14 pttop 19160 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( Xt_ `  F
)  e.  Top )
158, 9, 14syl2anc 661 . . . 4  |-  ( ph  ->  ( Xt_ `  F
)  e.  Top )
16 sseq1 3382 . . . . . . . . . . 11  |-  ( C  =  if ( k  =  x ,  C ,  U. ( F `  k ) )  -> 
( C  C_  U. ( F `  k )  <->  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( F `  k )
) )
17 sseq1 3382 . . . . . . . . . . 11  |-  ( U. ( F `  k )  =  if ( k  =  x ,  C ,  U. ( F `  k ) )  -> 
( U. ( F `
 k )  C_  U. ( F `  k
)  <->  if ( k  =  x ,  C ,  U. ( F `  k
) )  C_  U. ( F `  k )
) )
18 simpl 457 . . . . . . . . . . 11  |-  ( ( C  C_  U. ( F `  k )  /\  k  =  x
)  ->  C  C_  U. ( F `  k )
)
19 ssid 3380 . . . . . . . . . . . 12  |-  U. ( F `  k )  C_ 
U. ( F `  k )
2019a1i 11 . . . . . . . . . . 11  |-  ( ( C  C_  U. ( F `  k )  /\  -.  k  =  x )  ->  U. ( F `  k )  C_ 
U. ( F `  k ) )
2116, 17, 18, 20ifbothda 3829 . . . . . . . . . 10  |-  ( C 
C_  U. ( F `  k )  ->  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( F `  k )
)
2221ralimi 2796 . . . . . . . . 9  |-  ( A. k  e.  A  C  C_ 
U. ( F `  k )  ->  A. k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
)  C_  U. ( F `  k )
)
23 ss2ixp 7281 . . . . . . . . 9  |-  ( A. k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( F `  k )  -> 
X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  X_ k  e.  A  U. ( F `
 k ) )
245, 22, 233syl 20 . . . . . . . 8  |-  ( ph  -> 
X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  X_ k  e.  A  U. ( F `
 k ) )
2524adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
)  C_  X_ k  e.  A  U. ( F `
 k ) )
2612adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  U. ( F `  k )  =  U. ( Xt_ `  F
) )
2725, 26sseqtrd 3397 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
)  C_  U. ( Xt_ `  F ) )
2812eqcomd 2448 . . . . . . . . . 10  |-  ( ph  ->  U. ( Xt_ `  F
)  =  X_ k  e.  A  U. ( F `  k )
)
2928difeq1d 3478 . . . . . . . . 9  |-  ( ph  ->  ( U. ( Xt_ `  F )  \  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
) )  =  (
X_ k  e.  A  U. ( F `  k
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) ) )
3029adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  =  ( X_ k  e.  A  U. ( F `  k )  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) ) )
31 simpr 461 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
325adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  A. k  e.  A  C  C_  U. ( F `  k )
)
33 boxcutc 7311 . . . . . . . . 9  |-  ( ( x  e.  A  /\  A. k  e.  A  C  C_ 
U. ( F `  k ) )  -> 
( X_ k  e.  A  U. ( F `  k
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  =  X_ k  e.  A  if ( k  =  x ,  ( U. ( F `  k )  \  C ) ,  U. ( F `  k ) ) )
3431, 32, 33syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( X_ k  e.  A  U. ( F `  k ) 
\  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  =  X_ k  e.  A  if ( k  =  x ,  ( U. ( F `  k )  \  C ) ,  U. ( F `  k ) ) )
35 ixpeq2 7282 . . . . . . . . . 10  |-  ( A. k  e.  A  if ( k  =  x ,  ( U. ( F `  k )  \  C ) ,  U. ( F `  k ) )  =  if ( k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) )  ->  X_ k  e.  A  if ( k  =  x ,  ( U. ( F `  k )  \  C
) ,  U. ( F `  k )
)  =  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) ) )
36 fveq2 5696 . . . . . . . . . . . . . 14  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
3736unieqd 4106 . . . . . . . . . . . . 13  |-  ( k  =  x  ->  U. ( F `  k )  =  U. ( F `  x ) )
38 csbeq1a 3302 . . . . . . . . . . . . 13  |-  ( k  =  x  ->  C  =  [_ x  /  k ]_ C )
3937, 38difeq12d 3480 . . . . . . . . . . . 12  |-  ( k  =  x  ->  ( U. ( F `  k
)  \  C )  =  ( U. ( F `  x )  \  [_ x  /  k ]_ C ) )
4039adantl 466 . . . . . . . . . . 11  |-  ( ( k  e.  A  /\  k  =  x )  ->  ( U. ( F `
 k )  \  C )  =  ( U. ( F `  x )  \  [_ x  /  k ]_ C
) )
4140ifeq1da 3824 . . . . . . . . . 10  |-  ( k  e.  A  ->  if ( k  =  x ,  ( U. ( F `  k )  \  C ) ,  U. ( F `  k ) )  =  if ( k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) ) )
4235, 41mprg 2790 . . . . . . . . 9  |-  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 k )  \  C ) ,  U. ( F `  k ) )  =  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) )
4342a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 k )  \  C ) ,  U. ( F `  k ) )  =  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) ) )
4430, 34, 433eqtrd 2479 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  =  X_ k  e.  A  if ( k  =  x ,  ( U. ( F `  x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) ) )
458adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  A  e.  V )
469adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  F : A --> Top )
471ralrimiva 2804 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  A  C  e.  ( Clsd `  ( F `  k
) ) )
48 nfv 1673 . . . . . . . . . . . 12  |-  F/ x  C  e.  ( Clsd `  ( F `  k
) )
49 nfcsb1v 3309 . . . . . . . . . . . . 13  |-  F/_ k [_ x  /  k ]_ C
5049nfel1 2594 . . . . . . . . . . . 12  |-  F/ k
[_ x  /  k ]_ C  e.  ( Clsd `  ( F `  x ) )
5136fveq2d 5700 . . . . . . . . . . . . 13  |-  ( k  =  x  ->  ( Clsd `  ( F `  k ) )  =  ( Clsd `  ( F `  x )
) )
5238, 51eleq12d 2511 . . . . . . . . . . . 12  |-  ( k  =  x  ->  ( C  e.  ( Clsd `  ( F `  k
) )  <->  [_ x  / 
k ]_ C  e.  (
Clsd `  ( F `  x ) ) ) )
5348, 50, 52cbvral 2948 . . . . . . . . . . 11  |-  ( A. k  e.  A  C  e.  ( Clsd `  ( F `  k )
)  <->  A. x  e.  A  [_ x  /  k ]_ C  e.  ( Clsd `  ( F `  x
) ) )
5447, 53sylib 196 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  A  [_ x  /  k ]_ C  e.  ( Clsd `  ( F `  x
) ) )
5554r19.21bi 2819 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  [_ x  /  k ]_ C  e.  ( Clsd `  ( F `  x )
) )
56 eqid 2443 . . . . . . . . . 10  |-  U. ( F `  x )  =  U. ( F `  x )
5756cldopn 18640 . . . . . . . . 9  |-  ( [_ x  /  k ]_ C  e.  ( Clsd `  ( F `  x )
)  ->  ( U. ( F `  x ) 
\  [_ x  /  k ]_ C )  e.  ( F `  x ) )
5855, 57syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( U. ( F `  x
)  \  [_ x  / 
k ]_ C )  e.  ( F `  x
) )
5945, 46, 58ptopn2 19162 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) )  e.  ( Xt_ `  F ) )
6044, 59eqeltrd 2517 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  e.  ( Xt_ `  F
) )
61 eqid 2443 . . . . . . . . 9  |-  U. ( Xt_ `  F )  = 
U. ( Xt_ `  F
)
6261iscld 18636 . . . . . . . 8  |-  ( (
Xt_ `  F )  e.  Top  ->  ( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  e.  ( Clsd `  ( Xt_ `  F
) )  <->  ( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( Xt_ `  F )  /\  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  e.  ( Xt_ `  F
) ) ) )
6315, 62syl 16 . . . . . . 7  |-  ( ph  ->  ( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  e.  ( Clsd `  ( Xt_ `  F ) )  <-> 
( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( Xt_ `  F )  /\  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  e.  ( Xt_ `  F
) ) ) )
6463adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  e.  ( Clsd `  ( Xt_ `  F
) )  <->  ( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( Xt_ `  F )  /\  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  e.  ( Xt_ `  F
) ) ) )
6527, 60, 64mpbir2and 913 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
)  e.  ( Clsd `  ( Xt_ `  F
) ) )
6665ralrimiva 2804 . . . 4  |-  ( ph  ->  A. x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  e.  ( Clsd `  ( Xt_ `  F
) ) )
6761riincld 18653 . . . 4  |-  ( ( ( Xt_ `  F
)  e.  Top  /\  A. x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  e.  ( Clsd `  ( Xt_ `  F
) ) )  -> 
( U. ( Xt_ `  F )  i^i  |^|_ x  e.  A  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
) )  e.  (
Clsd `  ( Xt_ `  F ) ) )
6815, 66, 67syl2anc 661 . . 3  |-  ( ph  ->  ( U. ( Xt_ `  F )  i^i  |^|_ x  e.  A  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
) )  e.  (
Clsd `  ( Xt_ `  F ) ) )
6913, 68eqeltrd 2517 . 2  |-  ( ph  ->  ( X_ k  e.  A  U. ( F `
 k )  i^i  |^|_ x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  e.  (
Clsd `  ( Xt_ `  F ) ) )
707, 69eqeltrd 2517 1  |-  ( ph  -> 
X_ k  e.  A  C  e.  ( Clsd `  ( Xt_ `  F
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2720   [_csb 3293    \ cdif 3330    i^i cin 3332    C_ wss 3333   ifcif 3796   U.cuni 4096   |^|_ciin 4177   -->wf 5419   ` cfv 5423   X_cixp 7268   Xt_cpt 14382   Topctop 18503   Clsdccld 18625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-iin 4179  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-er 7106  df-ixp 7269  df-en 7316  df-fin 7319  df-fi 7666  df-topgen 14387  df-pt 14388  df-top 18508  df-bases 18510  df-cld 18628
This theorem is referenced by:  ptcldmpt  19192
  Copyright terms: Public domain W3C validator