MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcld Structured version   Unicode version

Theorem ptcld 20092
Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
ptcld.a  |-  ( ph  ->  A  e.  V )
ptcld.f  |-  ( ph  ->  F : A --> Top )
ptcld.c  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  ( Clsd `  ( F `  k )
) )
Assertion
Ref Expression
ptcld  |-  ( ph  -> 
X_ k  e.  A  C  e.  ( Clsd `  ( Xt_ `  F
) ) )
Distinct variable groups:    ph, k    A, k    k, F    k, V
Allowed substitution hint:    C( k)

Proof of Theorem ptcld
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ptcld.c . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  ( Clsd `  ( F `  k )
) )
2 eqid 2443 . . . . . 6  |-  U. ( F `  k )  =  U. ( F `  k )
32cldss 19508 . . . . 5  |-  ( C  e.  ( Clsd `  ( F `  k )
)  ->  C  C_  U. ( F `  k )
)
41, 3syl 16 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  C  C_ 
U. ( F `  k ) )
54ralrimiva 2857 . . 3  |-  ( ph  ->  A. k  e.  A  C  C_  U. ( F `
 k ) )
6 boxriin 7513 . . 3  |-  ( A. k  e.  A  C  C_ 
U. ( F `  k )  ->  X_ k  e.  A  C  =  ( X_ k  e.  A  U. ( F `  k
)  i^i  |^|_ x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) ) )
75, 6syl 16 . 2  |-  ( ph  -> 
X_ k  e.  A  C  =  ( X_ k  e.  A  U. ( F `  k )  i^i  |^|_ x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) ) )
8 ptcld.a . . . . 5  |-  ( ph  ->  A  e.  V )
9 ptcld.f . . . . 5  |-  ( ph  ->  F : A --> Top )
10 eqid 2443 . . . . . 6  |-  ( Xt_ `  F )  =  (
Xt_ `  F )
1110ptuni 20073 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. ( Xt_ `  F ) )
128, 9, 11syl2anc 661 . . . 4  |-  ( ph  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. ( Xt_ `  F ) )
1312ineq1d 3684 . . 3  |-  ( ph  ->  ( X_ k  e.  A  U. ( F `
 k )  i^i  |^|_ x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  =  ( U. ( Xt_ `  F
)  i^i  |^|_ x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) ) )
14 pttop 20061 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( Xt_ `  F
)  e.  Top )
158, 9, 14syl2anc 661 . . . 4  |-  ( ph  ->  ( Xt_ `  F
)  e.  Top )
16 sseq1 3510 . . . . . . . . . . 11  |-  ( C  =  if ( k  =  x ,  C ,  U. ( F `  k ) )  -> 
( C  C_  U. ( F `  k )  <->  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( F `  k )
) )
17 sseq1 3510 . . . . . . . . . . 11  |-  ( U. ( F `  k )  =  if ( k  =  x ,  C ,  U. ( F `  k ) )  -> 
( U. ( F `
 k )  C_  U. ( F `  k
)  <->  if ( k  =  x ,  C ,  U. ( F `  k
) )  C_  U. ( F `  k )
) )
18 simpl 457 . . . . . . . . . . 11  |-  ( ( C  C_  U. ( F `  k )  /\  k  =  x
)  ->  C  C_  U. ( F `  k )
)
19 ssid 3508 . . . . . . . . . . . 12  |-  U. ( F `  k )  C_ 
U. ( F `  k )
2019a1i 11 . . . . . . . . . . 11  |-  ( ( C  C_  U. ( F `  k )  /\  -.  k  =  x )  ->  U. ( F `  k )  C_ 
U. ( F `  k ) )
2116, 17, 18, 20ifbothda 3961 . . . . . . . . . 10  |-  ( C 
C_  U. ( F `  k )  ->  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( F `  k )
)
2221ralimi 2836 . . . . . . . . 9  |-  ( A. k  e.  A  C  C_ 
U. ( F `  k )  ->  A. k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
)  C_  U. ( F `  k )
)
23 ss2ixp 7484 . . . . . . . . 9  |-  ( A. k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( F `  k )  -> 
X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  X_ k  e.  A  U. ( F `
 k ) )
245, 22, 233syl 20 . . . . . . . 8  |-  ( ph  -> 
X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  X_ k  e.  A  U. ( F `
 k ) )
2524adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
)  C_  X_ k  e.  A  U. ( F `
 k ) )
2612adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  U. ( F `  k )  =  U. ( Xt_ `  F
) )
2725, 26sseqtrd 3525 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
)  C_  U. ( Xt_ `  F ) )
2812eqcomd 2451 . . . . . . . . . 10  |-  ( ph  ->  U. ( Xt_ `  F
)  =  X_ k  e.  A  U. ( F `  k )
)
2928difeq1d 3606 . . . . . . . . 9  |-  ( ph  ->  ( U. ( Xt_ `  F )  \  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
) )  =  (
X_ k  e.  A  U. ( F `  k
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) ) )
3029adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  =  ( X_ k  e.  A  U. ( F `  k )  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) ) )
31 simpr 461 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
325adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  A. k  e.  A  C  C_  U. ( F `  k )
)
33 boxcutc 7514 . . . . . . . . 9  |-  ( ( x  e.  A  /\  A. k  e.  A  C  C_ 
U. ( F `  k ) )  -> 
( X_ k  e.  A  U. ( F `  k
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  =  X_ k  e.  A  if ( k  =  x ,  ( U. ( F `  k )  \  C ) ,  U. ( F `  k ) ) )
3431, 32, 33syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( X_ k  e.  A  U. ( F `  k ) 
\  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  =  X_ k  e.  A  if ( k  =  x ,  ( U. ( F `  k )  \  C ) ,  U. ( F `  k ) ) )
35 ixpeq2 7485 . . . . . . . . . 10  |-  ( A. k  e.  A  if ( k  =  x ,  ( U. ( F `  k )  \  C ) ,  U. ( F `  k ) )  =  if ( k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) )  ->  X_ k  e.  A  if ( k  =  x ,  ( U. ( F `  k )  \  C
) ,  U. ( F `  k )
)  =  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) ) )
36 fveq2 5856 . . . . . . . . . . . . . 14  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
3736unieqd 4244 . . . . . . . . . . . . 13  |-  ( k  =  x  ->  U. ( F `  k )  =  U. ( F `  x ) )
38 csbeq1a 3429 . . . . . . . . . . . . 13  |-  ( k  =  x  ->  C  =  [_ x  /  k ]_ C )
3937, 38difeq12d 3608 . . . . . . . . . . . 12  |-  ( k  =  x  ->  ( U. ( F `  k
)  \  C )  =  ( U. ( F `  x )  \  [_ x  /  k ]_ C ) )
4039adantl 466 . . . . . . . . . . 11  |-  ( ( k  e.  A  /\  k  =  x )  ->  ( U. ( F `
 k )  \  C )  =  ( U. ( F `  x )  \  [_ x  /  k ]_ C
) )
4140ifeq1da 3956 . . . . . . . . . 10  |-  ( k  e.  A  ->  if ( k  =  x ,  ( U. ( F `  k )  \  C ) ,  U. ( F `  k ) )  =  if ( k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) ) )
4235, 41mprg 2806 . . . . . . . . 9  |-  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 k )  \  C ) ,  U. ( F `  k ) )  =  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) )
4342a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 k )  \  C ) ,  U. ( F `  k ) )  =  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) ) )
4430, 34, 433eqtrd 2488 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  =  X_ k  e.  A  if ( k  =  x ,  ( U. ( F `  x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) ) )
458adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  A  e.  V )
469adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  F : A --> Top )
471ralrimiva 2857 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  A  C  e.  ( Clsd `  ( F `  k
) ) )
48 nfv 1694 . . . . . . . . . . . 12  |-  F/ x  C  e.  ( Clsd `  ( F `  k
) )
49 nfcsb1v 3436 . . . . . . . . . . . . 13  |-  F/_ k [_ x  /  k ]_ C
5049nfel1 2621 . . . . . . . . . . . 12  |-  F/ k
[_ x  /  k ]_ C  e.  ( Clsd `  ( F `  x ) )
5136fveq2d 5860 . . . . . . . . . . . . 13  |-  ( k  =  x  ->  ( Clsd `  ( F `  k ) )  =  ( Clsd `  ( F `  x )
) )
5238, 51eleq12d 2525 . . . . . . . . . . . 12  |-  ( k  =  x  ->  ( C  e.  ( Clsd `  ( F `  k
) )  <->  [_ x  / 
k ]_ C  e.  (
Clsd `  ( F `  x ) ) ) )
5348, 50, 52cbvral 3066 . . . . . . . . . . 11  |-  ( A. k  e.  A  C  e.  ( Clsd `  ( F `  k )
)  <->  A. x  e.  A  [_ x  /  k ]_ C  e.  ( Clsd `  ( F `  x
) ) )
5447, 53sylib 196 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  A  [_ x  /  k ]_ C  e.  ( Clsd `  ( F `  x
) ) )
5554r19.21bi 2812 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  [_ x  /  k ]_ C  e.  ( Clsd `  ( F `  x )
) )
56 eqid 2443 . . . . . . . . . 10  |-  U. ( F `  x )  =  U. ( F `  x )
5756cldopn 19510 . . . . . . . . 9  |-  ( [_ x  /  k ]_ C  e.  ( Clsd `  ( F `  x )
)  ->  ( U. ( F `  x ) 
\  [_ x  /  k ]_ C )  e.  ( F `  x ) )
5855, 57syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( U. ( F `  x
)  \  [_ x  / 
k ]_ C )  e.  ( F `  x
) )
5945, 46, 58ptopn2 20063 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) )  e.  ( Xt_ `  F ) )
6044, 59eqeltrd 2531 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  e.  ( Xt_ `  F
) )
61 eqid 2443 . . . . . . . . 9  |-  U. ( Xt_ `  F )  = 
U. ( Xt_ `  F
)
6261iscld 19506 . . . . . . . 8  |-  ( (
Xt_ `  F )  e.  Top  ->  ( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  e.  ( Clsd `  ( Xt_ `  F
) )  <->  ( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( Xt_ `  F )  /\  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  e.  ( Xt_ `  F
) ) ) )
6315, 62syl 16 . . . . . . 7  |-  ( ph  ->  ( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  e.  ( Clsd `  ( Xt_ `  F ) )  <-> 
( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( Xt_ `  F )  /\  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  e.  ( Xt_ `  F
) ) ) )
6463adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  e.  ( Clsd `  ( Xt_ `  F
) )  <->  ( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( Xt_ `  F )  /\  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  e.  ( Xt_ `  F
) ) ) )
6527, 60, 64mpbir2and 922 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
)  e.  ( Clsd `  ( Xt_ `  F
) ) )
6665ralrimiva 2857 . . . 4  |-  ( ph  ->  A. x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  e.  ( Clsd `  ( Xt_ `  F
) ) )
6761riincld 19523 . . . 4  |-  ( ( ( Xt_ `  F
)  e.  Top  /\  A. x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  e.  ( Clsd `  ( Xt_ `  F
) ) )  -> 
( U. ( Xt_ `  F )  i^i  |^|_ x  e.  A  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
) )  e.  (
Clsd `  ( Xt_ `  F ) ) )
6815, 66, 67syl2anc 661 . . 3  |-  ( ph  ->  ( U. ( Xt_ `  F )  i^i  |^|_ x  e.  A  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
) )  e.  (
Clsd `  ( Xt_ `  F ) ) )
6913, 68eqeltrd 2531 . 2  |-  ( ph  ->  ( X_ k  e.  A  U. ( F `
 k )  i^i  |^|_ x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  e.  (
Clsd `  ( Xt_ `  F ) ) )
707, 69eqeltrd 2531 1  |-  ( ph  -> 
X_ k  e.  A  C  e.  ( Clsd `  ( Xt_ `  F
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804   A.wral 2793   [_csb 3420    \ cdif 3458    i^i cin 3460    C_ wss 3461   ifcif 3926   U.cuni 4234   |^|_ciin 4316   -->wf 5574   ` cfv 5578   X_cixp 7471   Xt_cpt 14818   Topctop 19372   Clsdccld 19495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-ixp 7472  df-en 7519  df-fin 7522  df-fi 7873  df-topgen 14823  df-pt 14824  df-top 19377  df-bases 19379  df-cld 19498
This theorem is referenced by:  ptcldmpt  20093
  Copyright terms: Public domain W3C validator