MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcld Unicode version

Theorem ptcld 17598
Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
ptcld.a  |-  ( ph  ->  A  e.  V )
ptcld.f  |-  ( ph  ->  F : A --> Top )
ptcld.c  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  ( Clsd `  ( F `  k )
) )
Assertion
Ref Expression
ptcld  |-  ( ph  -> 
X_ k  e.  A  C  e.  ( Clsd `  ( Xt_ `  F
) ) )
Distinct variable groups:    ph, k    A, k    k, F    k, V
Allowed substitution hint:    C( k)

Proof of Theorem ptcld
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ptcld.c . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  ( Clsd `  ( F `  k )
) )
2 eqid 2404 . . . . . 6  |-  U. ( F `  k )  =  U. ( F `  k )
32cldss 17048 . . . . 5  |-  ( C  e.  ( Clsd `  ( F `  k )
)  ->  C  C_  U. ( F `  k )
)
41, 3syl 16 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  C  C_ 
U. ( F `  k ) )
54ralrimiva 2749 . . 3  |-  ( ph  ->  A. k  e.  A  C  C_  U. ( F `
 k ) )
6 boxriin 7063 . . 3  |-  ( A. k  e.  A  C  C_ 
U. ( F `  k )  ->  X_ k  e.  A  C  =  ( X_ k  e.  A  U. ( F `  k
)  i^i  |^|_ x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) ) )
75, 6syl 16 . 2  |-  ( ph  -> 
X_ k  e.  A  C  =  ( X_ k  e.  A  U. ( F `  k )  i^i  |^|_ x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) ) )
8 ptcld.a . . . . 5  |-  ( ph  ->  A  e.  V )
9 ptcld.f . . . . 5  |-  ( ph  ->  F : A --> Top )
10 eqid 2404 . . . . . 6  |-  ( Xt_ `  F )  =  (
Xt_ `  F )
1110ptuni 17579 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. ( Xt_ `  F ) )
128, 9, 11syl2anc 643 . . . 4  |-  ( ph  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. ( Xt_ `  F ) )
1312ineq1d 3501 . . 3  |-  ( ph  ->  ( X_ k  e.  A  U. ( F `
 k )  i^i  |^|_ x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  =  ( U. ( Xt_ `  F
)  i^i  |^|_ x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) ) )
14 pttop 17567 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( Xt_ `  F
)  e.  Top )
158, 9, 14syl2anc 643 . . . 4  |-  ( ph  ->  ( Xt_ `  F
)  e.  Top )
16 sseq1 3329 . . . . . . . . . . 11  |-  ( C  =  if ( k  =  x ,  C ,  U. ( F `  k ) )  -> 
( C  C_  U. ( F `  k )  <->  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( F `  k )
) )
17 sseq1 3329 . . . . . . . . . . 11  |-  ( U. ( F `  k )  =  if ( k  =  x ,  C ,  U. ( F `  k ) )  -> 
( U. ( F `
 k )  C_  U. ( F `  k
)  <->  if ( k  =  x ,  C ,  U. ( F `  k
) )  C_  U. ( F `  k )
) )
18 simpl 444 . . . . . . . . . . 11  |-  ( ( C  C_  U. ( F `  k )  /\  k  =  x
)  ->  C  C_  U. ( F `  k )
)
19 ssid 3327 . . . . . . . . . . . 12  |-  U. ( F `  k )  C_ 
U. ( F `  k )
2019a1i 11 . . . . . . . . . . 11  |-  ( ( C  C_  U. ( F `  k )  /\  -.  k  =  x )  ->  U. ( F `  k )  C_ 
U. ( F `  k ) )
2116, 17, 18, 20ifbothda 3729 . . . . . . . . . 10  |-  ( C 
C_  U. ( F `  k )  ->  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( F `  k )
)
2221ralimi 2741 . . . . . . . . 9  |-  ( A. k  e.  A  C  C_ 
U. ( F `  k )  ->  A. k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
)  C_  U. ( F `  k )
)
23 ss2ixp 7034 . . . . . . . . 9  |-  ( A. k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( F `  k )  -> 
X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  X_ k  e.  A  U. ( F `
 k ) )
245, 22, 233syl 19 . . . . . . . 8  |-  ( ph  -> 
X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  X_ k  e.  A  U. ( F `
 k ) )
2524adantr 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
)  C_  X_ k  e.  A  U. ( F `
 k ) )
2612adantr 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  U. ( F `  k )  =  U. ( Xt_ `  F
) )
2725, 26sseqtrd 3344 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
)  C_  U. ( Xt_ `  F ) )
2812eqcomd 2409 . . . . . . . . . 10  |-  ( ph  ->  U. ( Xt_ `  F
)  =  X_ k  e.  A  U. ( F `  k )
)
2928difeq1d 3424 . . . . . . . . 9  |-  ( ph  ->  ( U. ( Xt_ `  F )  \  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
) )  =  (
X_ k  e.  A  U. ( F `  k
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) ) )
3029adantr 452 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  =  ( X_ k  e.  A  U. ( F `  k )  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) ) )
31 simpr 448 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
325adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  A. k  e.  A  C  C_  U. ( F `  k )
)
33 boxcutc 7064 . . . . . . . . 9  |-  ( ( x  e.  A  /\  A. k  e.  A  C  C_ 
U. ( F `  k ) )  -> 
( X_ k  e.  A  U. ( F `  k
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  =  X_ k  e.  A  if ( k  =  x ,  ( U. ( F `  k )  \  C ) ,  U. ( F `  k ) ) )
3431, 32, 33syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( X_ k  e.  A  U. ( F `  k ) 
\  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  =  X_ k  e.  A  if ( k  =  x ,  ( U. ( F `  k )  \  C ) ,  U. ( F `  k ) ) )
35 ixpeq2 7035 . . . . . . . . . 10  |-  ( A. k  e.  A  if ( k  =  x ,  ( U. ( F `  k )  \  C ) ,  U. ( F `  k ) )  =  if ( k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) )  ->  X_ k  e.  A  if ( k  =  x ,  ( U. ( F `  k )  \  C
) ,  U. ( F `  k )
)  =  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) ) )
36 fveq2 5687 . . . . . . . . . . . . . 14  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
3736unieqd 3986 . . . . . . . . . . . . 13  |-  ( k  =  x  ->  U. ( F `  k )  =  U. ( F `  x ) )
38 csbeq1a 3219 . . . . . . . . . . . . 13  |-  ( k  =  x  ->  C  =  [_ x  /  k ]_ C )
3937, 38difeq12d 3426 . . . . . . . . . . . 12  |-  ( k  =  x  ->  ( U. ( F `  k
)  \  C )  =  ( U. ( F `  x )  \  [_ x  /  k ]_ C ) )
4039adantl 453 . . . . . . . . . . 11  |-  ( ( k  e.  A  /\  k  =  x )  ->  ( U. ( F `
 k )  \  C )  =  ( U. ( F `  x )  \  [_ x  /  k ]_ C
) )
4140ifeq1da 3724 . . . . . . . . . 10  |-  ( k  e.  A  ->  if ( k  =  x ,  ( U. ( F `  k )  \  C ) ,  U. ( F `  k ) )  =  if ( k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) ) )
4235, 41mprg 2735 . . . . . . . . 9  |-  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 k )  \  C ) ,  U. ( F `  k ) )  =  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) )
4342a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 k )  \  C ) ,  U. ( F `  k ) )  =  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) ) )
4430, 34, 433eqtrd 2440 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  =  X_ k  e.  A  if ( k  =  x ,  ( U. ( F `  x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) ) )
458adantr 452 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  A  e.  V )
469adantr 452 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  F : A --> Top )
471ralrimiva 2749 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  A  C  e.  ( Clsd `  ( F `  k
) ) )
48 nfv 1626 . . . . . . . . . . . 12  |-  F/ x  C  e.  ( Clsd `  ( F `  k
) )
49 nfcsb1v 3243 . . . . . . . . . . . . 13  |-  F/_ k [_ x  /  k ]_ C
5049nfel1 2550 . . . . . . . . . . . 12  |-  F/ k
[_ x  /  k ]_ C  e.  ( Clsd `  ( F `  x ) )
5136fveq2d 5691 . . . . . . . . . . . . 13  |-  ( k  =  x  ->  ( Clsd `  ( F `  k ) )  =  ( Clsd `  ( F `  x )
) )
5238, 51eleq12d 2472 . . . . . . . . . . . 12  |-  ( k  =  x  ->  ( C  e.  ( Clsd `  ( F `  k
) )  <->  [_ x  / 
k ]_ C  e.  (
Clsd `  ( F `  x ) ) ) )
5348, 50, 52cbvral 2888 . . . . . . . . . . 11  |-  ( A. k  e.  A  C  e.  ( Clsd `  ( F `  k )
)  <->  A. x  e.  A  [_ x  /  k ]_ C  e.  ( Clsd `  ( F `  x
) ) )
5447, 53sylib 189 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  A  [_ x  /  k ]_ C  e.  ( Clsd `  ( F `  x
) ) )
5554r19.21bi 2764 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  [_ x  /  k ]_ C  e.  ( Clsd `  ( F `  x )
) )
56 eqid 2404 . . . . . . . . . 10  |-  U. ( F `  x )  =  U. ( F `  x )
5756cldopn 17050 . . . . . . . . 9  |-  ( [_ x  /  k ]_ C  e.  ( Clsd `  ( F `  x )
)  ->  ( U. ( F `  x ) 
\  [_ x  /  k ]_ C )  e.  ( F `  x ) )
5855, 57syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( U. ( F `  x
)  \  [_ x  / 
k ]_ C )  e.  ( F `  x
) )
5945, 46, 58ptopn2 17569 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  if (
k  =  x ,  ( U. ( F `
 x )  \  [_ x  /  k ]_ C ) ,  U. ( F `  k ) )  e.  ( Xt_ `  F ) )
6044, 59eqeltrd 2478 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  e.  ( Xt_ `  F
) )
61 eqid 2404 . . . . . . . . 9  |-  U. ( Xt_ `  F )  = 
U. ( Xt_ `  F
)
6261iscld 17046 . . . . . . . 8  |-  ( (
Xt_ `  F )  e.  Top  ->  ( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  e.  ( Clsd `  ( Xt_ `  F
) )  <->  ( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( Xt_ `  F )  /\  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  e.  ( Xt_ `  F
) ) ) )
6315, 62syl 16 . . . . . . 7  |-  ( ph  ->  ( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  e.  ( Clsd `  ( Xt_ `  F ) )  <-> 
( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( Xt_ `  F )  /\  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  e.  ( Xt_ `  F
) ) ) )
6463adantr 452 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  e.  ( Clsd `  ( Xt_ `  F
) )  <->  ( X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  C_  U. ( Xt_ `  F )  /\  ( U. ( Xt_ `  F
)  \  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  e.  ( Xt_ `  F
) ) ) )
6527, 60, 64mpbir2and 889 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
)  e.  ( Clsd `  ( Xt_ `  F
) ) )
6665ralrimiva 2749 . . . 4  |-  ( ph  ->  A. x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  e.  ( Clsd `  ( Xt_ `  F
) ) )
6761riincld 17063 . . . 4  |-  ( ( ( Xt_ `  F
)  e.  Top  /\  A. x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) )  e.  ( Clsd `  ( Xt_ `  F
) ) )  -> 
( U. ( Xt_ `  F )  i^i  |^|_ x  e.  A  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
) )  e.  (
Clsd `  ( Xt_ `  F ) ) )
6815, 66, 67syl2anc 643 . . 3  |-  ( ph  ->  ( U. ( Xt_ `  F )  i^i  |^|_ x  e.  A  X_ k  e.  A  if (
k  =  x ,  C ,  U. ( F `  k )
) )  e.  (
Clsd `  ( Xt_ `  F ) ) )
6913, 68eqeltrd 2478 . 2  |-  ( ph  ->  ( X_ k  e.  A  U. ( F `
 k )  i^i  |^|_ x  e.  A  X_ k  e.  A  if ( k  =  x ,  C ,  U. ( F `  k ) ) )  e.  (
Clsd `  ( Xt_ `  F ) ) )
707, 69eqeltrd 2478 1  |-  ( ph  -> 
X_ k  e.  A  C  e.  ( Clsd `  ( Xt_ `  F
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   [_csb 3211    \ cdif 3277    i^i cin 3279    C_ wss 3280   ifcif 3699   U.cuni 3975   |^|_ciin 4054   -->wf 5409   ` cfv 5413   X_cixp 7022   Xt_cpt 13621   Topctop 16913   Clsdccld 17035
This theorem is referenced by:  ptcldmpt  17599
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-ixp 7023  df-en 7069  df-fin 7072  df-fi 7374  df-topgen 13622  df-pt 13623  df-top 16918  df-bases 16920  df-cld 17038
  Copyright terms: Public domain W3C validator