MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptbasin Structured version   Unicode version

Theorem ptbasin 19905
Description: The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
Assertion
Ref Expression
ptbasin  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( X  i^i  Y )  e.  B )
Distinct variable groups:    x, g,
y, z, A    g, Y, x    g, F, x, y, z    g, X, x, z    g, V, x, y, z
Allowed substitution hints:    B( x, y, z, g)    X( y)    Y( y, z)

Proof of Theorem ptbasin
Dummy variables  a 
b  c  d  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptbas.1 . . . . . 6  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
21elpt 19900 . . . . 5  |-  ( X  e.  B  <->  E. a
( ( a  Fn  A  /\  A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  E. c  e. 
Fin  A. y  e.  ( A  \  c ) ( a `  y
)  =  U. ( F `  y )
)  /\  X  =  X_ y  e.  A  ( a `  y ) ) )
31elpt 19900 . . . . 5  |-  ( Y  e.  B  <->  E. b
( ( b  Fn  A  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y )  /\  E. d  e. 
Fin  A. y  e.  ( A  \  d ) ( b `  y
)  =  U. ( F `  y )
)  /\  Y  =  X_ y  e.  A  ( b `  y ) ) )
42, 3anbi12i 697 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  <->  ( E. a ( ( a  Fn  A  /\  A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  E. c  e.  Fin  A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y ) )  /\  X  = 
X_ y  e.  A  ( a `  y
) )  /\  E. b ( ( b  Fn  A  /\  A. y  e.  A  (
b `  y )  e.  ( F `  y
)  /\  E. d  e.  Fin  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) )  /\  Y  = 
X_ y  e.  A  ( b `  y
) ) ) )
5 eeanv 1957 . . . 4  |-  ( E. a E. b ( ( ( a  Fn  A  /\  A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  E. c  e. 
Fin  A. y  e.  ( A  \  c ) ( a `  y
)  =  U. ( F `  y )
)  /\  X  =  X_ y  e.  A  ( a `  y ) )  /\  ( ( b  Fn  A  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y )  /\  E. d  e.  Fin  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) )  /\  Y  = 
X_ y  e.  A  ( b `  y
) ) )  <->  ( E. a ( ( a  Fn  A  /\  A. y  e.  A  (
a `  y )  e.  ( F `  y
)  /\  E. c  e.  Fin  A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y ) )  /\  X  = 
X_ y  e.  A  ( a `  y
) )  /\  E. b ( ( b  Fn  A  /\  A. y  e.  A  (
b `  y )  e.  ( F `  y
)  /\  E. d  e.  Fin  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) )  /\  Y  = 
X_ y  e.  A  ( b `  y
) ) ) )
64, 5bitr4i 252 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  <->  E. a E. b ( ( ( a  Fn  A  /\  A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  E. c  e. 
Fin  A. y  e.  ( A  \  c ) ( a `  y
)  =  U. ( F `  y )
)  /\  X  =  X_ y  e.  A  ( a `  y ) )  /\  ( ( b  Fn  A  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y )  /\  E. d  e.  Fin  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) )  /\  Y  = 
X_ y  e.  A  ( b `  y
) ) ) )
7 an4 822 . . . . 5  |-  ( ( ( ( a  Fn  A  /\  A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  E. c  e. 
Fin  A. y  e.  ( A  \  c ) ( a `  y
)  =  U. ( F `  y )
)  /\  X  =  X_ y  e.  A  ( a `  y ) )  /\  ( ( b  Fn  A  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y )  /\  E. d  e.  Fin  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) )  /\  Y  = 
X_ y  e.  A  ( b `  y
) ) )  <->  ( (
( a  Fn  A  /\  A. y  e.  A  ( a `  y
)  e.  ( F `
 y )  /\  E. c  e.  Fin  A. y  e.  ( A  \  c ) ( a `
 y )  = 
U. ( F `  y ) )  /\  ( b  Fn  A  /\  A. y  e.  A  ( b `  y
)  e.  ( F `
 y )  /\  E. d  e.  Fin  A. y  e.  ( A  \  d ) ( b `
 y )  = 
U. ( F `  y ) ) )  /\  ( X  = 
X_ y  e.  A  ( a `  y
)  /\  Y  =  X_ y  e.  A  ( b `  y ) ) ) )
8 an6 1308 . . . . . . . . 9  |-  ( ( ( a  Fn  A  /\  A. y  e.  A  ( a `  y
)  e.  ( F `
 y )  /\  E. c  e.  Fin  A. y  e.  ( A  \  c ) ( a `
 y )  = 
U. ( F `  y ) )  /\  ( b  Fn  A  /\  A. y  e.  A  ( b `  y
)  e.  ( F `
 y )  /\  E. d  e.  Fin  A. y  e.  ( A  \  d ) ( b `
 y )  = 
U. ( F `  y ) ) )  <-> 
( ( a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y
)  e.  ( F `
 y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) )  /\  ( E. c  e.  Fin  A. y  e.  ( A 
\  c ) ( a `  y )  =  U. ( F `
 y )  /\  E. d  e.  Fin  A. y  e.  ( A  \  d ) ( b `
 y )  = 
U. ( F `  y ) ) ) )
9 df-3an 975 . . . . . . . . 9  |-  ( ( ( a  Fn  A  /\  b  Fn  A
)  /\  ( A. y  e.  A  (
a `  y )  e.  ( F `  y
)  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) )  /\  ( E. c  e.  Fin  A. y  e.  ( A  \  c ) ( a `
 y )  = 
U. ( F `  y )  /\  E. d  e.  Fin  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) ) )  <->  ( (
( a  Fn  A  /\  b  Fn  A
)  /\  ( A. y  e.  A  (
a `  y )  e.  ( F `  y
)  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  ( E. c  e.  Fin  A. y  e.  ( A 
\  c ) ( a `  y )  =  U. ( F `
 y )  /\  E. d  e.  Fin  A. y  e.  ( A  \  d ) ( b `
 y )  = 
U. ( F `  y ) ) ) )
108, 9bitri 249 . . . . . . . 8  |-  ( ( ( a  Fn  A  /\  A. y  e.  A  ( a `  y
)  e.  ( F `
 y )  /\  E. c  e.  Fin  A. y  e.  ( A  \  c ) ( a `
 y )  = 
U. ( F `  y ) )  /\  ( b  Fn  A  /\  A. y  e.  A  ( b `  y
)  e.  ( F `
 y )  /\  E. d  e.  Fin  A. y  e.  ( A  \  d ) ( b `
 y )  = 
U. ( F `  y ) ) )  <-> 
( ( ( a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y
)  e.  ( F `
 y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  ( E. c  e.  Fin  A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y )  /\  E. d  e. 
Fin  A. y  e.  ( A  \  d ) ( b `  y
)  =  U. ( F `  y )
) ) )
11 reeanv 3029 . . . . . . . . . . 11  |-  ( E. c  e.  Fin  E. d  e.  Fin  ( A. y  e.  ( A  \  c ) ( a `
 y )  = 
U. ( F `  y )  /\  A. y  e.  ( A  \  d ) ( b `
 y )  = 
U. ( F `  y ) )  <->  ( E. c  e.  Fin  A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y )  /\  E. d  e. 
Fin  A. y  e.  ( A  \  d ) ( b `  y
)  =  U. ( F `  y )
) )
12 fveq2 5866 . . . . . . . . . . . . . . . 16  |-  ( y  =  k  ->  (
a `  y )  =  ( a `  k ) )
13 fveq2 5866 . . . . . . . . . . . . . . . 16  |-  ( y  =  k  ->  (
b `  y )  =  ( b `  k ) )
1412, 13ineq12d 3701 . . . . . . . . . . . . . . 15  |-  ( y  =  k  ->  (
( a `  y
)  i^i  ( b `  y ) )  =  ( ( a `  k )  i^i  (
b `  k )
) )
1514cbvixpv 7488 . . . . . . . . . . . . . 14  |-  X_ y  e.  A  ( (
a `  y )  i^i  ( b `  y
) )  =  X_ k  e.  A  (
( a `  k
)  i^i  ( b `  k ) )
16 simpl1l 1047 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top )  /\  (
a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  (
( c  e.  Fin  /\  d  e.  Fin )  /\  ( A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y )  /\  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) ) ) )  ->  A  e.  V )
17 unfi 7788 . . . . . . . . . . . . . . . 16  |-  ( ( c  e.  Fin  /\  d  e.  Fin )  ->  ( c  u.  d
)  e.  Fin )
1817ad2antrl 727 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top )  /\  (
a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  (
( c  e.  Fin  /\  d  e.  Fin )  /\  ( A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y )  /\  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) ) ) )  -> 
( c  u.  d
)  e.  Fin )
19 simpl1r 1048 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top )  /\  (
a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  (
( c  e.  Fin  /\  d  e.  Fin )  /\  ( A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y )  /\  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) ) ) )  ->  F : A --> Top )
2019ffvelrnda 6022 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Top )  /\  (
a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  (
( c  e.  Fin  /\  d  e.  Fin )  /\  ( A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y )  /\  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) ) ) )  /\  k  e.  A )  ->  ( F `  k
)  e.  Top )
21 simpl3l 1051 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top )  /\  (
a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  (
( c  e.  Fin  /\  d  e.  Fin )  /\  ( A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y )  /\  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) ) ) )  ->  A. y  e.  A  ( a `  y
)  e.  ( F `
 y ) )
22 fveq2 5866 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  k  ->  ( F `  y )  =  ( F `  k ) )
2312, 22eleq12d 2549 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  k  ->  (
( a `  y
)  e.  ( F `
 y )  <->  ( a `  k )  e.  ( F `  k ) ) )
2423rspccva 3213 . . . . . . . . . . . . . . . . 17  |-  ( ( A. y  e.  A  ( a `  y
)  e.  ( F `
 y )  /\  k  e.  A )  ->  ( a `  k
)  e.  ( F `
 k ) )
2521, 24sylan 471 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Top )  /\  (
a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  (
( c  e.  Fin  /\  d  e.  Fin )  /\  ( A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y )  /\  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) ) ) )  /\  k  e.  A )  ->  ( a `  k
)  e.  ( F `
 k ) )
26 simpl3r 1052 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top )  /\  (
a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  (
( c  e.  Fin  /\  d  e.  Fin )  /\  ( A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y )  /\  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) ) ) )  ->  A. y  e.  A  ( b `  y
)  e.  ( F `
 y ) )
2713, 22eleq12d 2549 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  k  ->  (
( b `  y
)  e.  ( F `
 y )  <->  ( b `  k )  e.  ( F `  k ) ) )
2827rspccva 3213 . . . . . . . . . . . . . . . . 17  |-  ( ( A. y  e.  A  ( b `  y
)  e.  ( F `
 y )  /\  k  e.  A )  ->  ( b `  k
)  e.  ( F `
 k ) )
2926, 28sylan 471 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Top )  /\  (
a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  (
( c  e.  Fin  /\  d  e.  Fin )  /\  ( A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y )  /\  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) ) ) )  /\  k  e.  A )  ->  ( b `  k
)  e.  ( F `
 k ) )
30 inopn 19215 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  k
)  e.  Top  /\  ( a `  k
)  e.  ( F `
 k )  /\  ( b `  k
)  e.  ( F `
 k ) )  ->  ( ( a `
 k )  i^i  ( b `  k
) )  e.  ( F `  k ) )
3120, 25, 29, 30syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Top )  /\  (
a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  (
( c  e.  Fin  /\  d  e.  Fin )  /\  ( A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y )  /\  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) ) ) )  /\  k  e.  A )  ->  ( ( a `  k )  i^i  (
b `  k )
)  e.  ( F `
 k ) )
32 simprrl 763 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top )  /\  (
a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  (
( c  e.  Fin  /\  d  e.  Fin )  /\  ( A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y )  /\  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) ) ) )  ->  A. y  e.  ( A  \  c ) ( a `  y )  =  U. ( F `
 y ) )
33 ssun1 3667 . . . . . . . . . . . . . . . . . . . 20  |-  c  C_  ( c  u.  d
)
34 sscon 3638 . . . . . . . . . . . . . . . . . . . 20  |-  ( c 
C_  ( c  u.  d )  ->  ( A  \  ( c  u.  d ) )  C_  ( A  \  c
) )
3533, 34ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( A 
\  ( c  u.  d ) )  C_  ( A  \  c
)
3635sseli 3500 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( A  \ 
( c  u.  d
) )  ->  k  e.  ( A  \  c
) )
3722unieqd 4255 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  k  ->  U. ( F `  y )  =  U. ( F `  k ) )
3812, 37eqeq12d 2489 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  k  ->  (
( a `  y
)  =  U. ( F `  y )  <->  ( a `  k )  =  U. ( F `
 k ) ) )
3938rspccva 3213 . . . . . . . . . . . . . . . . . 18  |-  ( ( A. y  e.  ( A  \  c ) ( a `  y
)  =  U. ( F `  y )  /\  k  e.  ( A  \  c ) )  ->  ( a `  k )  =  U. ( F `  k ) )
4032, 36, 39syl2an 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Top )  /\  (
a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  (
( c  e.  Fin  /\  d  e.  Fin )  /\  ( A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y )  /\  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) ) ) )  /\  k  e.  ( A  \  ( c  u.  d
) ) )  -> 
( a `  k
)  =  U. ( F `  k )
)
41 simprrr 764 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top )  /\  (
a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  (
( c  e.  Fin  /\  d  e.  Fin )  /\  ( A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y )  /\  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) ) ) )  ->  A. y  e.  ( A  \  d ) ( b `  y )  =  U. ( F `
 y ) )
42 ssun2 3668 . . . . . . . . . . . . . . . . . . . 20  |-  d  C_  ( c  u.  d
)
43 sscon 3638 . . . . . . . . . . . . . . . . . . . 20  |-  ( d 
C_  ( c  u.  d )  ->  ( A  \  ( c  u.  d ) )  C_  ( A  \  d
) )
4442, 43ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( A 
\  ( c  u.  d ) )  C_  ( A  \  d
)
4544sseli 3500 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( A  \ 
( c  u.  d
) )  ->  k  e.  ( A  \  d
) )
4613, 37eqeq12d 2489 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  k  ->  (
( b `  y
)  =  U. ( F `  y )  <->  ( b `  k )  =  U. ( F `
 k ) ) )
4746rspccva 3213 . . . . . . . . . . . . . . . . . 18  |-  ( ( A. y  e.  ( A  \  d ) ( b `  y
)  =  U. ( F `  y )  /\  k  e.  ( A  \  d ) )  ->  ( b `  k )  =  U. ( F `  k ) )
4841, 45, 47syl2an 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Top )  /\  (
a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  (
( c  e.  Fin  /\  d  e.  Fin )  /\  ( A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y )  /\  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) ) ) )  /\  k  e.  ( A  \  ( c  u.  d
) ) )  -> 
( b `  k
)  =  U. ( F `  k )
)
4940, 48ineq12d 3701 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Top )  /\  (
a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  (
( c  e.  Fin  /\  d  e.  Fin )  /\  ( A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y )  /\  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) ) ) )  /\  k  e.  ( A  \  ( c  u.  d
) ) )  -> 
( ( a `  k )  i^i  (
b `  k )
)  =  ( U. ( F `  k )  i^i  U. ( F `
 k ) ) )
50 inidm 3707 . . . . . . . . . . . . . . . 16  |-  ( U. ( F `  k )  i^i  U. ( F `
 k ) )  =  U. ( F `
 k )
5149, 50syl6eq 2524 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Top )  /\  (
a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  (
( c  e.  Fin  /\  d  e.  Fin )  /\  ( A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y )  /\  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) ) ) )  /\  k  e.  ( A  \  ( c  u.  d
) ) )  -> 
( ( a `  k )  i^i  (
b `  k )
)  =  U. ( F `  k )
)
521, 16, 18, 31, 51elptr2 19902 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top )  /\  (
a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  (
( c  e.  Fin  /\  d  e.  Fin )  /\  ( A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y )  /\  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) ) ) )  ->  X_ k  e.  A  ( ( a `  k
)  i^i  ( b `  k ) )  e.  B )
5315, 52syl5eqel 2559 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top )  /\  (
a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  (
( c  e.  Fin  /\  d  e.  Fin )  /\  ( A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y )  /\  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) ) ) )  ->  X_ y  e.  A  ( ( a `  y
)  i^i  ( b `  y ) )  e.  B )
5453expr 615 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top )  /\  (
a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  (
c  e.  Fin  /\  d  e.  Fin )
)  ->  ( ( A. y  e.  ( A  \  c ) ( a `  y )  =  U. ( F `
 y )  /\  A. y  e.  ( A 
\  d ) ( b `  y )  =  U. ( F `
 y ) )  ->  X_ y  e.  A  ( ( a `  y )  i^i  (
b `  y )
)  e.  B ) )
5554rexlimdvva 2962 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( a  Fn  A  /\  b  Fn  A
)  /\  ( A. y  e.  A  (
a `  y )  e.  ( F `  y
)  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  ->  ( E. c  e.  Fin  E. d  e.  Fin  ( A. y  e.  ( A  \  c ) ( a `  y )  =  U. ( F `
 y )  /\  A. y  e.  ( A 
\  d ) ( b `  y )  =  U. ( F `
 y ) )  ->  X_ y  e.  A  ( ( a `  y )  i^i  (
b `  y )
)  e.  B ) )
5611, 55syl5bir 218 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( a  Fn  A  /\  b  Fn  A
)  /\  ( A. y  e.  A  (
a `  y )  e.  ( F `  y
)  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  ->  (
( E. c  e. 
Fin  A. y  e.  ( A  \  c ) ( a `  y
)  =  U. ( F `  y )  /\  E. d  e.  Fin  A. y  e.  ( A 
\  d ) ( b `  y )  =  U. ( F `
 y ) )  ->  X_ y  e.  A  ( ( a `  y )  i^i  (
b `  y )
)  e.  B ) )
57563expb 1197 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( ( a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y
)  e.  ( F `
 y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) ) )  ->  ( ( E. c  e.  Fin  A. y  e.  ( A 
\  c ) ( a `  y )  =  U. ( F `
 y )  /\  E. d  e.  Fin  A. y  e.  ( A  \  d ) ( b `
 y )  = 
U. ( F `  y ) )  ->  X_ y  e.  A  ( ( a `  y
)  i^i  ( b `  y ) )  e.  B ) )
5857impr 619 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( ( ( a  Fn  A  /\  b  Fn  A )  /\  ( A. y  e.  A  ( a `  y
)  e.  ( F `
 y )  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y ) ) )  /\  ( E. c  e.  Fin  A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y )  /\  E. d  e. 
Fin  A. y  e.  ( A  \  d ) ( b `  y
)  =  U. ( F `  y )
) ) )  ->  X_ y  e.  A  ( ( a `  y
)  i^i  ( b `  y ) )  e.  B )
5910, 58sylan2b 475 . . . . . . 7  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( ( a  Fn  A  /\  A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  E. c  e. 
Fin  A. y  e.  ( A  \  c ) ( a `  y
)  =  U. ( F `  y )
)  /\  ( b  Fn  A  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y )  /\  E. d  e. 
Fin  A. y  e.  ( A  \  d ) ( b `  y
)  =  U. ( F `  y )
) ) )  ->  X_ y  e.  A  ( ( a `  y
)  i^i  ( b `  y ) )  e.  B )
60 ineq12 3695 . . . . . . . . 9  |-  ( ( X  =  X_ y  e.  A  ( a `  y )  /\  Y  =  X_ y  e.  A  ( b `  y
) )  ->  ( X  i^i  Y )  =  ( X_ y  e.  A  ( a `  y )  i^i  X_ y  e.  A  ( b `  y ) ) )
61 ixpin 7495 . . . . . . . . 9  |-  X_ y  e.  A  ( (
a `  y )  i^i  ( b `  y
) )  =  (
X_ y  e.  A  ( a `  y
)  i^i  X_ y  e.  A  ( b `  y ) )
6260, 61syl6eqr 2526 . . . . . . . 8  |-  ( ( X  =  X_ y  e.  A  ( a `  y )  /\  Y  =  X_ y  e.  A  ( b `  y
) )  ->  ( X  i^i  Y )  = 
X_ y  e.  A  ( ( a `  y )  i^i  (
b `  y )
) )
6362eleq1d 2536 . . . . . . 7  |-  ( ( X  =  X_ y  e.  A  ( a `  y )  /\  Y  =  X_ y  e.  A  ( b `  y
) )  ->  (
( X  i^i  Y
)  e.  B  <->  X_ y  e.  A  ( ( a `
 y )  i^i  ( b `  y
) )  e.  B
) )
6459, 63syl5ibrcom 222 . . . . . 6  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( ( a  Fn  A  /\  A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  E. c  e. 
Fin  A. y  e.  ( A  \  c ) ( a `  y
)  =  U. ( F `  y )
)  /\  ( b  Fn  A  /\  A. y  e.  A  ( b `  y )  e.  ( F `  y )  /\  E. d  e. 
Fin  A. y  e.  ( A  \  d ) ( b `  y
)  =  U. ( F `  y )
) ) )  -> 
( ( X  = 
X_ y  e.  A  ( a `  y
)  /\  Y  =  X_ y  e.  A  ( b `  y ) )  ->  ( X  i^i  Y )  e.  B
) )
6564expimpd 603 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( ( ( ( a  Fn  A  /\  A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  E. c  e.  Fin  A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y ) )  /\  ( b  Fn  A  /\  A. y  e.  A  (
b `  y )  e.  ( F `  y
)  /\  E. d  e.  Fin  A. y  e.  ( A  \  d
) ( b `  y )  =  U. ( F `  y ) ) )  /\  ( X  =  X_ y  e.  A  ( a `  y )  /\  Y  =  X_ y  e.  A  ( b `  y
) ) )  -> 
( X  i^i  Y
)  e.  B ) )
667, 65syl5bi 217 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( ( ( ( a  Fn  A  /\  A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  E. c  e.  Fin  A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y ) )  /\  X  = 
X_ y  e.  A  ( a `  y
) )  /\  (
( b  Fn  A  /\  A. y  e.  A  ( b `  y
)  e.  ( F `
 y )  /\  E. d  e.  Fin  A. y  e.  ( A  \  d ) ( b `
 y )  = 
U. ( F `  y ) )  /\  Y  =  X_ y  e.  A  ( b `  y ) ) )  ->  ( X  i^i  Y )  e.  B ) )
6766exlimdvv 1701 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( E. a E. b ( ( ( a  Fn  A  /\  A. y  e.  A  ( a `  y )  e.  ( F `  y )  /\  E. c  e.  Fin  A. y  e.  ( A  \  c
) ( a `  y )  =  U. ( F `  y ) )  /\  X  = 
X_ y  e.  A  ( a `  y
) )  /\  (
( b  Fn  A  /\  A. y  e.  A  ( b `  y
)  e.  ( F `
 y )  /\  E. d  e.  Fin  A. y  e.  ( A  \  d ) ( b `
 y )  = 
U. ( F `  y ) )  /\  Y  =  X_ y  e.  A  ( b `  y ) ) )  ->  ( X  i^i  Y )  e.  B ) )
686, 67syl5bi 217 . 2  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  i^i  Y )  e.  B ) )
6968imp 429 1  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( X  i^i  Y )  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   {cab 2452   A.wral 2814   E.wrex 2815    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   U.cuni 4245    Fn wfn 5583   -->wf 5584   ` cfv 5588   X_cixp 7470   Fincfn 7517   Topctop 19201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-recs 7043  df-rdg 7077  df-oadd 7135  df-er 7312  df-ixp 7471  df-en 7518  df-fin 7521  df-top 19206
This theorem is referenced by:  ptbasin2  19906
  Copyright terms: Public domain W3C validator