MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptbas Structured version   Unicode version

Theorem ptbas 19127
Description: The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
Assertion
Ref Expression
ptbas  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  B  e.  TopBases )
Distinct variable groups:    x, g,
y, z, A    g, F, x, y, z    g, V, x, y, z
Allowed substitution hints:    B( x, y, z, g)

Proof of Theorem ptbas
StepHypRef Expression
1 ptbas.1 . . 3  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
21ptbasin2 19126 . 2  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( fi `  B
)  =  B )
3 fibas 18557 . 2  |-  ( fi
`  B )  e.  TopBases
42, 3syl6eqelr 2527 1  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  B  e.  TopBases )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756   {cab 2424   A.wral 2710   E.wrex 2711    \ cdif 3320   U.cuni 4086    Fn wfn 5408   -->wf 5409   ` cfv 5413   X_cixp 7255   Fincfn 7302   ficfi 7652   Topctop 18473   TopBasesctb 18477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-ixp 7256  df-en 7303  df-fin 7306  df-fi 7653  df-top 18478  df-bases 18480
This theorem is referenced by:  ptbasfi  19129  pttop  19130  ptopn  19131  ptuni  19142  ptpjcn  19159  ptclsg  19163
  Copyright terms: Public domain W3C validator