Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubspset Structured version   Visualization version   Unicode version

Theorem psubspset 33321
Description: The set of projective subspaces in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
psubspset.l  |-  .<_  =  ( le `  K )
psubspset.j  |-  .\/  =  ( join `  K )
psubspset.a  |-  A  =  ( Atoms `  K )
psubspset.s  |-  S  =  ( PSubSp `  K )
Assertion
Ref Expression
psubspset  |-  ( K  e.  B  ->  S  =  { s  |  ( s  C_  A  /\  A. p  e.  s  A. q  e.  s  A. r  e.  A  (
r  .<_  ( p  .\/  q )  ->  r  e.  s ) ) } )
Distinct variable groups:    s, r, A    q, p, r, s, K
Allowed substitution hints:    A( q, p)    B( s, r, q, p)    S( s, r, q, p)    .\/ ( s, r, q, p)    .<_ ( s, r, q, p)

Proof of Theorem psubspset
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3056 . 2  |-  ( K  e.  B  ->  K  e.  _V )
2 psubspset.s . . 3  |-  S  =  ( PSubSp `  K )
3 fveq2 5870 . . . . . . . 8  |-  ( k  =  K  ->  ( Atoms `  k )  =  ( Atoms `  K )
)
4 psubspset.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
53, 4syl6eqr 2505 . . . . . . 7  |-  ( k  =  K  ->  ( Atoms `  k )  =  A )
65sseq2d 3462 . . . . . 6  |-  ( k  =  K  ->  (
s  C_  ( Atoms `  k )  <->  s  C_  A ) )
7 fveq2 5870 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( join `  k )  =  ( join `  K
) )
8 psubspset.j . . . . . . . . . . . . 13  |-  .\/  =  ( join `  K )
97, 8syl6eqr 2505 . . . . . . . . . . . 12  |-  ( k  =  K  ->  ( join `  k )  = 
.\/  )
109oveqd 6312 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
p ( join `  k
) q )  =  ( p  .\/  q
) )
1110breq2d 4417 . . . . . . . . . 10  |-  ( k  =  K  ->  (
r ( le `  k ) ( p ( join `  k
) q )  <->  r ( le `  k ) ( p  .\/  q ) ) )
12 fveq2 5870 . . . . . . . . . . . 12  |-  ( k  =  K  ->  ( le `  k )  =  ( le `  K
) )
13 psubspset.l . . . . . . . . . . . 12  |-  .<_  =  ( le `  K )
1412, 13syl6eqr 2505 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( le `  k )  = 
.<_  )
1514breqd 4416 . . . . . . . . . 10  |-  ( k  =  K  ->  (
r ( le `  k ) ( p 
.\/  q )  <->  r  .<_  ( p  .\/  q ) ) )
1611, 15bitrd 257 . . . . . . . . 9  |-  ( k  =  K  ->  (
r ( le `  k ) ( p ( join `  k
) q )  <->  r  .<_  ( p  .\/  q ) ) )
1716imbi1d 319 . . . . . . . 8  |-  ( k  =  K  ->  (
( r ( le
`  k ) ( p ( join `  k
) q )  -> 
r  e.  s )  <-> 
( r  .<_  ( p 
.\/  q )  -> 
r  e.  s ) ) )
185, 17raleqbidv 3003 . . . . . . 7  |-  ( k  =  K  ->  ( A. r  e.  ( Atoms `  k ) ( r ( le `  k ) ( p ( join `  k
) q )  -> 
r  e.  s )  <->  A. r  e.  A  ( r  .<_  ( p 
.\/  q )  -> 
r  e.  s ) ) )
19182ralbidv 2834 . . . . . 6  |-  ( k  =  K  ->  ( A. p  e.  s  A. q  e.  s  A. r  e.  ( Atoms `  k ) ( r ( le `  k ) ( p ( join `  k
) q )  -> 
r  e.  s )  <->  A. p  e.  s  A. q  e.  s  A. r  e.  A  ( r  .<_  ( p 
.\/  q )  -> 
r  e.  s ) ) )
206, 19anbi12d 718 . . . . 5  |-  ( k  =  K  ->  (
( s  C_  ( Atoms `  k )  /\  A. p  e.  s  A. q  e.  s  A. r  e.  ( Atoms `  k ) ( r ( le `  k
) ( p (
join `  k )
q )  ->  r  e.  s ) )  <->  ( s  C_  A  /\  A. p  e.  s  A. q  e.  s  A. r  e.  A  ( r  .<_  ( p  .\/  q
)  ->  r  e.  s ) ) ) )
2120abbidv 2571 . . . 4  |-  ( k  =  K  ->  { s  |  ( s  C_  ( Atoms `  k )  /\  A. p  e.  s 
A. q  e.  s 
A. r  e.  (
Atoms `  k ) ( r ( le `  k ) ( p ( join `  k
) q )  -> 
r  e.  s ) ) }  =  {
s  |  ( s 
C_  A  /\  A. p  e.  s  A. q  e.  s  A. r  e.  A  (
r  .<_  ( p  .\/  q )  ->  r  e.  s ) ) } )
22 df-psubsp 33080 . . . 4  |-  PSubSp  =  ( k  e.  _V  |->  { s  |  ( s 
C_  ( Atoms `  k
)  /\  A. p  e.  s  A. q  e.  s  A. r  e.  ( Atoms `  k )
( r ( le
`  k ) ( p ( join `  k
) q )  -> 
r  e.  s ) ) } )
23 fvex 5880 . . . . . . 7  |-  ( Atoms `  K )  e.  _V
244, 23eqeltri 2527 . . . . . 6  |-  A  e. 
_V
2524pwex 4589 . . . . 5  |-  ~P A  e.  _V
26 selpw 3960 . . . . . . . 8  |-  ( s  e.  ~P A  <->  s  C_  A )
2726anbi1i 702 . . . . . . 7  |-  ( ( s  e.  ~P A  /\  A. p  e.  s 
A. q  e.  s 
A. r  e.  A  ( r  .<_  ( p 
.\/  q )  -> 
r  e.  s ) )  <->  ( s  C_  A  /\  A. p  e.  s  A. q  e.  s  A. r  e.  A  ( r  .<_  ( p  .\/  q )  ->  r  e.  s ) ) )
2827abbii 2569 . . . . . 6  |-  { s  |  ( s  e. 
~P A  /\  A. p  e.  s  A. q  e.  s  A. r  e.  A  (
r  .<_  ( p  .\/  q )  ->  r  e.  s ) ) }  =  { s  |  ( s  C_  A  /\  A. p  e.  s 
A. q  e.  s 
A. r  e.  A  ( r  .<_  ( p 
.\/  q )  -> 
r  e.  s ) ) }
29 ssab2 3515 . . . . . 6  |-  { s  |  ( s  e. 
~P A  /\  A. p  e.  s  A. q  e.  s  A. r  e.  A  (
r  .<_  ( p  .\/  q )  ->  r  e.  s ) ) } 
C_  ~P A
3028, 29eqsstr3i 3465 . . . . 5  |-  { s  |  ( s  C_  A  /\  A. p  e.  s  A. q  e.  s  A. r  e.  A  ( r  .<_  ( p  .\/  q )  ->  r  e.  s ) ) }  C_  ~P A
3125, 30ssexi 4551 . . . 4  |-  { s  |  ( s  C_  A  /\  A. p  e.  s  A. q  e.  s  A. r  e.  A  ( r  .<_  ( p  .\/  q )  ->  r  e.  s ) ) }  e.  _V
3221, 22, 31fvmpt 5953 . . 3  |-  ( K  e.  _V  ->  ( PSubSp `
 K )  =  { s  |  ( s  C_  A  /\  A. p  e.  s  A. q  e.  s  A. r  e.  A  (
r  .<_  ( p  .\/  q )  ->  r  e.  s ) ) } )
332, 32syl5eq 2499 . 2  |-  ( K  e.  _V  ->  S  =  { s  |  ( s  C_  A  /\  A. p  e.  s  A. q  e.  s  A. r  e.  A  (
r  .<_  ( p  .\/  q )  ->  r  e.  s ) ) } )
341, 33syl 17 1  |-  ( K  e.  B  ->  S  =  { s  |  ( s  C_  A  /\  A. p  e.  s  A. q  e.  s  A. r  e.  A  (
r  .<_  ( p  .\/  q )  ->  r  e.  s ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1446    e. wcel 1889   {cab 2439   A.wral 2739   _Vcvv 3047    C_ wss 3406   ~Pcpw 3953   class class class wbr 4405   ` cfv 5585  (class class class)co 6295   lecple 15209   joincjn 16201   Atomscatm 32841   PSubSpcpsubsp 33073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-ral 2744  df-rex 2745  df-rab 2748  df-v 3049  df-sbc 3270  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-op 3977  df-uni 4202  df-br 4406  df-opab 4465  df-mpt 4466  df-id 4752  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5549  df-fun 5587  df-fv 5593  df-ov 6298  df-psubsp 33080
This theorem is referenced by:  ispsubsp  33322
  Copyright terms: Public domain W3C validator