Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubspi Structured version   Unicode version

Theorem psubspi 35614
Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012.)
Hypotheses
Ref Expression
psubspset.l  |-  .<_  =  ( le `  K )
psubspset.j  |-  .\/  =  ( join `  K )
psubspset.a  |-  A  =  ( Atoms `  K )
psubspset.s  |-  S  =  ( PSubSp `  K )
Assertion
Ref Expression
psubspi  |-  ( ( ( K  e.  D  /\  X  e.  S  /\  P  e.  A
)  /\  E. q  e.  X  E. r  e.  X  P  .<_  ( q  .\/  r ) )  ->  P  e.  X )
Distinct variable groups:    A, r,
q    K, q, r    X, q, r    A, q    P, q, r
Allowed substitution hints:    D( r, q)    S( r, q)    .\/ ( r, q)    .<_ ( r, q)

Proof of Theorem psubspi
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 psubspset.l . . . . . 6  |-  .<_  =  ( le `  K )
2 psubspset.j . . . . . 6  |-  .\/  =  ( join `  K )
3 psubspset.a . . . . . 6  |-  A  =  ( Atoms `  K )
4 psubspset.s . . . . . 6  |-  S  =  ( PSubSp `  K )
51, 2, 3, 4ispsubsp2 35613 . . . . 5  |-  ( K  e.  D  ->  ( X  e.  S  <->  ( X  C_  A  /\  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) ) ) )
65simplbda 624 . . . 4  |-  ( ( K  e.  D  /\  X  e.  S )  ->  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r )  ->  p  e.  X ) )
76ex 434 . . 3  |-  ( K  e.  D  ->  ( X  e.  S  ->  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r )  ->  p  e.  X ) ) )
8 breq1 4459 . . . . . 6  |-  ( p  =  P  ->  (
p  .<_  ( q  .\/  r )  <->  P  .<_  ( q  .\/  r ) ) )
982rexbidv 2975 . . . . 5  |-  ( p  =  P  ->  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r )  <->  E. q  e.  X  E. r  e.  X  P  .<_  ( q  .\/  r ) ) )
10 eleq1 2529 . . . . 5  |-  ( p  =  P  ->  (
p  e.  X  <->  P  e.  X ) )
119, 10imbi12d 320 . . . 4  |-  ( p  =  P  ->  (
( E. q  e.  X  E. r  e.  X  p  .<_  ( q 
.\/  r )  ->  p  e.  X )  <->  ( E. q  e.  X  E. r  e.  X  P  .<_  ( q  .\/  r )  ->  P  e.  X ) ) )
1211rspccv 3207 . . 3  |-  ( A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r )  ->  p  e.  X )  ->  ( P  e.  A  ->  ( E. q  e.  X  E. r  e.  X  P  .<_  ( q  .\/  r )  ->  P  e.  X ) ) )
137, 12syl6 33 . 2  |-  ( K  e.  D  ->  ( X  e.  S  ->  ( P  e.  A  -> 
( E. q  e.  X  E. r  e.  X  P  .<_  ( q 
.\/  r )  ->  P  e.  X )
) ) )
14133imp1 1209 1  |-  ( ( ( K  e.  D  /\  X  e.  S  /\  P  e.  A
)  /\  E. q  e.  X  E. r  e.  X  P  .<_  ( q  .\/  r ) )  ->  P  e.  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808    C_ wss 3471   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   lecple 14719   joincjn 15700   Atomscatm 35131   PSubSpcpsubsp 35363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-iota 5557  df-fun 5596  df-fv 5602  df-ov 6299  df-psubsp 35370
This theorem is referenced by:  psubspi2N  35615  paddidm  35708
  Copyright terms: Public domain W3C validator