Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pstmfval Structured version   Unicode version

Theorem pstmfval 26345
Description: Function value of the metric induced by a pseudometric  D (Contributed by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
pstmval.1  |-  .~  =  (~Met `  D )
Assertion
Ref Expression
pstmfval  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( [ A ]  .~  (pstoMet `  D ) [ B ]  .~  )  =  ( A D B ) )

Proof of Theorem pstmfval
Dummy variables  a 
b  x  y  z  e  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pstmval.1 . . . . 5  |-  .~  =  (~Met `  D )
21pstmval 26344 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  (pstoMet `  D
)  =  ( x  e.  ( X /.  .~  ) ,  y  e.  ( X /.  .~  )  |->  U. { z  |  E. a  e.  x  E. b  e.  y 
z  =  ( a D b ) } ) )
323ad2ant1 1009 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  (pstoMet `  D )  =  ( x  e.  ( X /.  .~  ) ,  y  e.  ( X /.  .~  )  |->  U. { z  |  E. a  e.  x  E. b  e.  y  z  =  ( a D b ) } ) )
43oveqd 6129 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( [ A ]  .~  (pstoMet `  D ) [ B ]  .~  )  =  ( [ A ]  .~  ( x  e.  ( X /.  .~  ) ,  y  e.  ( X /.  .~  )  |->  U. { z  |  E. a  e.  x  E. b  e.  y  z  =  ( a D b ) } ) [ B ]  .~  ) )
5 fvex 5722 . . . . . 6  |-  (~Met `  D )  e.  _V
61, 5eqeltri 2513 . . . . 5  |-  .~  e.  _V
76ecelqsi 7177 . . . 4  |-  ( A  e.  X  ->  [ A ]  .~  e.  ( X /.  .~  ) )
873ad2ant2 1010 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  [ A ]  .~  e.  ( X /.  .~  ) )
96ecelqsi 7177 . . . 4  |-  ( B  e.  X  ->  [ B ]  .~  e.  ( X /.  .~  ) )
1093ad2ant3 1011 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  [ B ]  .~  e.  ( X /.  .~  ) )
11 rexeq 2939 . . . . . 6  |-  ( x  =  [ A ]  .~  ->  ( E. a  e.  x  E. b  e.  y  z  =  ( a D b )  <->  E. a  e.  [  A ]  .~  E. b  e.  y  z  =  ( a D b ) ) )
1211abbidv 2563 . . . . 5  |-  ( x  =  [ A ]  .~  ->  { z  |  E. a  e.  x  E. b  e.  y 
z  =  ( a D b ) }  =  { z  |  E. a  e.  [  A ]  .~  E. b  e.  y  z  =  ( a D b ) } )
1312unieqd 4122 . . . 4  |-  ( x  =  [ A ]  .~  ->  U. { z  |  E. a  e.  x  E. b  e.  y 
z  =  ( a D b ) }  =  U. { z  |  E. a  e. 
[  A ]  .~  E. b  e.  y  z  =  ( a D b ) } )
14 rexeq 2939 . . . . . . 7  |-  ( y  =  [ B ]  .~  ->  ( E. b  e.  y  z  =  ( a D b )  <->  E. b  e.  [  B ]  .~  z  =  ( a D b ) ) )
1514rexbidv 2757 . . . . . 6  |-  ( y  =  [ B ]  .~  ->  ( E. a  e.  [  A ]  .~  E. b  e.  y  z  =  ( a D b )  <->  E. a  e.  [  A ]  .~  E. b  e.  [  B ]  .~  z  =  ( a D b ) ) )
1615abbidv 2563 . . . . 5  |-  ( y  =  [ B ]  .~  ->  { z  |  E. a  e.  [  A ]  .~  E. b  e.  y  z  =  ( a D b ) }  =  {
z  |  E. a  e.  [  A ]  .~  E. b  e.  [  B ]  .~  z  =  ( a D b ) } )
1716unieqd 4122 . . . 4  |-  ( y  =  [ B ]  .~  ->  U. { z  |  E. a  e.  [  A ]  .~  E. b  e.  y  z  =  ( a D b ) }  =  U. { z  |  E. a  e.  [  A ]  .~  E. b  e. 
[  B ]  .~  z  =  ( a D b ) } )
18 eqid 2443 . . . 4  |-  ( x  e.  ( X /.  .~  ) ,  y  e.  ( X /.  .~  )  |->  U. { z  |  E. a  e.  x  E. b  e.  y 
z  =  ( a D b ) } )  =  ( x  e.  ( X /.  .~  ) ,  y  e.  ( X /.  .~  )  |->  U. { z  |  E. a  e.  x  E. b  e.  y 
z  =  ( a D b ) } )
19 ecexg 7126 . . . . . . 7  |-  (  .~  e.  _V  ->  [ A ]  .~  e.  _V )
206, 19ax-mp 5 . . . . . 6  |-  [ A ]  .~  e.  _V
21 ecexg 7126 . . . . . . 7  |-  (  .~  e.  _V  ->  [ B ]  .~  e.  _V )
226, 21ax-mp 5 . . . . . 6  |-  [ B ]  .~  e.  _V
2320, 22ab2rexex 6589 . . . . 5  |-  { z  |  E. a  e. 
[  A ]  .~  E. b  e.  [  B ]  .~  z  =  ( a D b ) }  e.  _V
2423uniex 6397 . . . 4  |-  U. {
z  |  E. a  e.  [  A ]  .~  E. b  e.  [  B ]  .~  z  =  ( a D b ) }  e.  _V
2513, 17, 18, 24ovmpt2 6247 . . 3  |-  ( ( [ A ]  .~  e.  ( X /.  .~  )  /\  [ B ]  .~  e.  ( X /.  .~  ) )  ->  ( [ A ]  .~  (
x  e.  ( X /.  .~  ) ,  y  e.  ( X /.  .~  )  |->  U. { z  |  E. a  e.  x  E. b  e.  y  z  =  ( a D b ) } ) [ B ]  .~  )  =  U. { z  |  E. a  e. 
[  A ]  .~  E. b  e.  [  B ]  .~  z  =  ( a D b ) } )
268, 10, 25syl2anc 661 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( [ A ]  .~  (
x  e.  ( X /.  .~  ) ,  y  e.  ( X /.  .~  )  |->  U. { z  |  E. a  e.  x  E. b  e.  y  z  =  ( a D b ) } ) [ B ]  .~  )  =  U. { z  |  E. a  e. 
[  A ]  .~  E. b  e.  [  B ]  .~  z  =  ( a D b ) } )
27 simpr3 996 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  (
e  e.  [ A ]  .~  /\  f  e. 
[ B ]  .~  /\  z  =  ( e D f ) ) )  ->  z  =  ( e D f ) )
28 simpl1 991 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  (
e  e.  [ A ]  .~  /\  f  e. 
[ B ]  .~  /\  z  =  ( e D f ) ) )  ->  D  e.  (PsMet `  X ) )
29 simpr1 994 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  (
e  e.  [ A ]  .~  /\  f  e. 
[ B ]  .~  /\  z  =  ( e D f ) ) )  ->  e  e.  [ A ]  .~  )
30 metidss 26340 . . . . . . . . . . . . . . . . . . . . 21  |-  ( D  e.  (PsMet `  X
)  ->  (~Met `  D
)  C_  ( X  X.  X ) )
311, 30syl5eqss 3421 . . . . . . . . . . . . . . . . . . . 20  |-  ( D  e.  (PsMet `  X
)  ->  .~  C_  ( X  X.  X ) )
32 xpss 4967 . . . . . . . . . . . . . . . . . . . 20  |-  ( X  X.  X )  C_  ( _V  X.  _V )
3331, 32syl6ss 3389 . . . . . . . . . . . . . . . . . . 19  |-  ( D  e.  (PsMet `  X
)  ->  .~  C_  ( _V  X.  _V ) )
34 df-rel 4868 . . . . . . . . . . . . . . . . . . 19  |-  ( Rel 
.~ 
<->  .~  C_  ( _V  X.  _V ) )
3533, 34sylibr 212 . . . . . . . . . . . . . . . . . 18  |-  ( D  e.  (PsMet `  X
)  ->  Rel  .~  )
36353ad2ant1 1009 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  Rel  .~  )
3736adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  (
e  e.  [ A ]  .~  /\  f  e. 
[ B ]  .~  /\  z  =  ( e D f ) ) )  ->  Rel  .~  )
38 relelec 7162 . . . . . . . . . . . . . . . 16  |-  ( Rel 
.~  ->  ( e  e. 
[ A ]  .~  <->  A  .~  e ) )
3937, 38syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  (
e  e.  [ A ]  .~  /\  f  e. 
[ B ]  .~  /\  z  =  ( e D f ) ) )  ->  ( e  e.  [ A ]  .~  <->  A  .~  e ) )
4029, 39mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  (
e  e.  [ A ]  .~  /\  f  e. 
[ B ]  .~  /\  z  =  ( e D f ) ) )  ->  A  .~  e )
411breqi 4319 . . . . . . . . . . . . . 14  |-  ( A  .~  e  <->  A (~Met `  D ) e )
4240, 41sylib 196 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  (
e  e.  [ A ]  .~  /\  f  e. 
[ B ]  .~  /\  z  =  ( e D f ) ) )  ->  A (~Met `  D ) e )
43 simpr2 995 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  (
e  e.  [ A ]  .~  /\  f  e. 
[ B ]  .~  /\  z  =  ( e D f ) ) )  ->  f  e.  [ B ]  .~  )
44 relelec 7162 . . . . . . . . . . . . . . . 16  |-  ( Rel 
.~  ->  ( f  e. 
[ B ]  .~  <->  B  .~  f ) )
4537, 44syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  (
e  e.  [ A ]  .~  /\  f  e. 
[ B ]  .~  /\  z  =  ( e D f ) ) )  ->  ( f  e.  [ B ]  .~  <->  B  .~  f ) )
4643, 45mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  (
e  e.  [ A ]  .~  /\  f  e. 
[ B ]  .~  /\  z  =  ( e D f ) ) )  ->  B  .~  f )
471breqi 4319 . . . . . . . . . . . . . 14  |-  ( B  .~  f  <->  B (~Met `  D ) f )
4846, 47sylib 196 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  (
e  e.  [ A ]  .~  /\  f  e. 
[ B ]  .~  /\  z  =  ( e D f ) ) )  ->  B (~Met `  D ) f )
49 metideq 26342 . . . . . . . . . . . . 13  |-  ( ( D  e.  (PsMet `  X )  /\  ( A (~Met `  D )
e  /\  B (~Met `  D ) f ) )  ->  ( A D B )  =  ( e D f ) )
5028, 42, 48, 49syl12anc 1216 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  (
e  e.  [ A ]  .~  /\  f  e. 
[ B ]  .~  /\  z  =  ( e D f ) ) )  ->  ( A D B )  =  ( e D f ) )
5127, 50eqtr4d 2478 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  (
e  e.  [ A ]  .~  /\  f  e. 
[ B ]  .~  /\  z  =  ( e D f ) ) )  ->  z  =  ( A D B ) )
5251adantlr 714 . . . . . . . . . 10  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X
)  /\  E. a  e.  [  A ]  .~  E. b  e.  [  B ]  .~  z  =  ( a D b ) )  /\  ( e  e.  [ A ]  .~  /\  f  e.  [ B ]  .~  /\  z  =  ( e D f ) ) )  ->  z  =  ( A D B ) )
53523anassrs 1209 . . . . . . . . 9  |-  ( ( ( ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  E. a  e.  [  A ]  .~  E. b  e. 
[  B ]  .~  z  =  ( a D b ) )  /\  e  e.  [ A ]  .~  )  /\  f  e.  [ B ]  .~  )  /\  z  =  ( e D f ) )  -> 
z  =  ( A D B ) )
54 oveq1 6119 . . . . . . . . . . . . 13  |-  ( a  =  e  ->  (
a D b )  =  ( e D b ) )
5554eqeq2d 2454 . . . . . . . . . . . 12  |-  ( a  =  e  ->  (
z  =  ( a D b )  <->  z  =  ( e D b ) ) )
56 oveq2 6120 . . . . . . . . . . . . 13  |-  ( b  =  f  ->  (
e D b )  =  ( e D f ) )
5756eqeq2d 2454 . . . . . . . . . . . 12  |-  ( b  =  f  ->  (
z  =  ( e D b )  <->  z  =  ( e D f ) ) )
5855, 57cbvrex2v 2977 . . . . . . . . . . 11  |-  ( E. a  e.  [  A ]  .~  E. b  e. 
[  B ]  .~  z  =  ( a D b )  <->  E. e  e.  [  A ]  .~  E. f  e.  [  B ]  .~  z  =  ( e D f ) )
5958biimpi 194 . . . . . . . . . 10  |-  ( E. a  e.  [  A ]  .~  E. b  e. 
[  B ]  .~  z  =  ( a D b )  ->  E. e  e.  [  A ]  .~  E. f  e. 
[  B ]  .~  z  =  ( e D f ) )
6059adantl 466 . . . . . . . . 9  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  E. a  e.  [  A ]  .~  E. b  e. 
[  B ]  .~  z  =  ( a D b ) )  ->  E. e  e.  [  A ]  .~  E. f  e.  [  B ]  .~  z  =  ( e D f ) )
6153, 60r19.29_2a 2885 . . . . . . . 8  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  E. a  e.  [  A ]  .~  E. b  e. 
[  B ]  .~  z  =  ( a D b ) )  ->  z  =  ( A D B ) )
6261ex 434 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( E. a  e.  [  A ]  .~  E. b  e. 
[  B ]  .~  z  =  ( a D b )  -> 
z  =  ( A D B ) ) )
63 simpl1 991 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  z  =  ( A D B ) )  ->  D  e.  (PsMet `  X
) )
64 simpl2 992 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  z  =  ( A D B ) )  ->  A  e.  X )
65 psmet0 19906 . . . . . . . . . . 11  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X )  ->  ( A D A )  =  0 )
6663, 64, 65syl2anc 661 . . . . . . . . . 10  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  z  =  ( A D B ) )  -> 
( A D A )  =  0 )
67 relelec 7162 . . . . . . . . . . . 12  |-  ( Rel 
.~  ->  ( A  e. 
[ A ]  .~  <->  A  .~  A ) )
6863, 35, 673syl 20 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  z  =  ( A D B ) )  -> 
( A  e.  [ A ]  .~  <->  A  .~  A ) )
691a1i 11 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  z  =  ( A D B ) )  ->  .~  =  (~Met `  D
) )
7069breqd 4324 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  z  =  ( A D B ) )  -> 
( A  .~  A  <->  A (~Met `  D ) A ) )
71 metidv 26341 . . . . . . . . . . . 12  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  A  e.  X )
)  ->  ( A
(~Met `  D ) A 
<->  ( A D A )  =  0 ) )
7263, 64, 64, 71syl12anc 1216 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  z  =  ( A D B ) )  -> 
( A (~Met `  D ) A  <->  ( A D A )  =  0 ) )
7368, 70, 723bitrd 279 . . . . . . . . . 10  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  z  =  ( A D B ) )  -> 
( A  e.  [ A ]  .~  <->  ( A D A )  =  0 ) )
7466, 73mpbird 232 . . . . . . . . 9  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  z  =  ( A D B ) )  ->  A  e.  [ A ]  .~  )
75 simpl3 993 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  z  =  ( A D B ) )  ->  B  e.  X )
76 psmet0 19906 . . . . . . . . . . 11  |-  ( ( D  e.  (PsMet `  X )  /\  B  e.  X )  ->  ( B D B )  =  0 )
7763, 75, 76syl2anc 661 . . . . . . . . . 10  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  z  =  ( A D B ) )  -> 
( B D B )  =  0 )
78 relelec 7162 . . . . . . . . . . . 12  |-  ( Rel 
.~  ->  ( B  e. 
[ B ]  .~  <->  B  .~  B ) )
7963, 35, 783syl 20 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  z  =  ( A D B ) )  -> 
( B  e.  [ B ]  .~  <->  B  .~  B ) )
8069breqd 4324 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  z  =  ( A D B ) )  -> 
( B  .~  B  <->  B (~Met `  D ) B ) )
81 metidv 26341 . . . . . . . . . . . 12  |-  ( ( D  e.  (PsMet `  X )  /\  ( B  e.  X  /\  B  e.  X )
)  ->  ( B
(~Met `  D ) B 
<->  ( B D B )  =  0 ) )
8263, 75, 75, 81syl12anc 1216 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  z  =  ( A D B ) )  -> 
( B (~Met `  D ) B  <->  ( B D B )  =  0 ) )
8379, 80, 823bitrd 279 . . . . . . . . . 10  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  z  =  ( A D B ) )  -> 
( B  e.  [ B ]  .~  <->  ( B D B )  =  0 ) )
8477, 83mpbird 232 . . . . . . . . 9  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  z  =  ( A D B ) )  ->  B  e.  [ B ]  .~  )
85 simpr 461 . . . . . . . . 9  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  z  =  ( A D B ) )  -> 
z  =  ( A D B ) )
86 oveq1 6119 . . . . . . . . . . 11  |-  ( a  =  A  ->  (
a D b )  =  ( A D b ) )
8786eqeq2d 2454 . . . . . . . . . 10  |-  ( a  =  A  ->  (
z  =  ( a D b )  <->  z  =  ( A D b ) ) )
88 oveq2 6120 . . . . . . . . . . 11  |-  ( b  =  B  ->  ( A D b )  =  ( A D B ) )
8988eqeq2d 2454 . . . . . . . . . 10  |-  ( b  =  B  ->  (
z  =  ( A D b )  <->  z  =  ( A D B ) ) )
9087, 89rspc2ev 3102 . . . . . . . . 9  |-  ( ( A  e.  [ A ]  .~  /\  B  e. 
[ B ]  .~  /\  z  =  ( A D B ) )  ->  E. a  e.  [  A ]  .~  E. b  e.  [  B ]  .~  z  =  ( a D b ) )
9174, 84, 85, 90syl3anc 1218 . . . . . . . 8  |-  ( ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  /\  z  =  ( A D B ) )  ->  E. a  e.  [  A ]  .~  E. b  e. 
[  B ]  .~  z  =  ( a D b ) )
9291ex 434 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  (
z  =  ( A D B )  ->  E. a  e.  [  A ]  .~  E. b  e. 
[  B ]  .~  z  =  ( a D b ) ) )
9362, 92impbid 191 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( E. a  e.  [  A ]  .~  E. b  e. 
[  B ]  .~  z  =  ( a D b )  <->  z  =  ( A D B ) ) )
9493abbidv 2563 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  { z  |  E. a  e. 
[  A ]  .~  E. b  e.  [  B ]  .~  z  =  ( a D b ) }  =  { z  |  z  =  ( A D B ) } )
95 df-sn 3899 . . . . 5  |-  { ( A D B ) }  =  { z  |  z  =  ( A D B ) }
9694, 95syl6eqr 2493 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  { z  |  E. a  e. 
[  A ]  .~  E. b  e.  [  B ]  .~  z  =  ( a D b ) }  =  { ( A D B ) } )
9796unieqd 4122 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  U. {
z  |  E. a  e.  [  A ]  .~  E. b  e.  [  B ]  .~  z  =  ( a D b ) }  =  U. {
( A D B ) } )
98 ovex 6137 . . . 4  |-  ( A D B )  e. 
_V
9998unisn 4127 . . 3  |-  U. {
( A D B ) }  =  ( A D B )
10097, 99syl6eq 2491 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  U. {
z  |  E. a  e.  [  A ]  .~  E. b  e.  [  B ]  .~  z  =  ( a D b ) }  =  ( A D B ) )
1014, 26, 1003eqtrd 2479 1  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( [ A ]  .~  (pstoMet `  D ) [ B ]  .~  )  =  ( A D B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   {cab 2429   E.wrex 2737   _Vcvv 2993    C_ wss 3349   {csn 3898   U.cuni 4112   class class class wbr 4313    X. cxp 4859   Rel wrel 4866   ` cfv 5439  (class class class)co 6112    e. cmpt2 6114   [cec 7120   /.cqs 7121   0cc0 9303  PsMetcpsmet 17822  ~Metcmetid 26335  pstoMetcpstm 26336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-po 4662  df-so 4663  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-1st 6598  df-2nd 6599  df-er 7122  df-ec 7124  df-qs 7128  df-map 7237  df-en 7332  df-dom 7333  df-sdom 7334  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-xadd 11111  df-psmet 17831  df-metid 26337  df-pstm 26338
This theorem is referenced by:  pstmxmet  26346
  Copyright terms: Public domain W3C validator