MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psssdm2 Structured version   Unicode version

Theorem psssdm2 15406
Description: Field of a subposet. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypothesis
Ref Expression
psssdm.1  |-  X  =  dom  R
Assertion
Ref Expression
psssdm2  |-  ( R  e.  PosetRel  ->  dom  ( R  i^i  ( A  X.  A
) )  =  ( X  i^i  A ) )

Proof of Theorem psssdm2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dmin 5068 . . . 4  |-  dom  ( R  i^i  ( A  X.  A ) )  C_  ( dom  R  i^i  dom  ( A  X.  A
) )
2 psssdm.1 . . . . . 6  |-  X  =  dom  R
32eqcomi 2447 . . . . 5  |-  dom  R  =  X
4 dmxpid 5080 . . . . 5  |-  dom  ( A  X.  A )  =  A
53, 4ineq12i 3571 . . . 4  |-  ( dom 
R  i^i  dom  ( A  X.  A ) )  =  ( X  i^i  A )
61, 5sseqtri 3409 . . 3  |-  dom  ( R  i^i  ( A  X.  A ) )  C_  ( X  i^i  A )
76a1i 11 . 2  |-  ( R  e.  PosetRel  ->  dom  ( R  i^i  ( A  X.  A
) )  C_  ( X  i^i  A ) )
8 inss2 3592 . . . . . . 7  |-  ( X  i^i  A )  C_  A
9 simpr 461 . . . . . . 7  |-  ( ( R  e.  PosetRel  /\  x  e.  ( X  i^i  A
) )  ->  x  e.  ( X  i^i  A
) )
108, 9sseldi 3375 . . . . . 6  |-  ( ( R  e.  PosetRel  /\  x  e.  ( X  i^i  A
) )  ->  x  e.  A )
11 inss1 3591 . . . . . . . 8  |-  ( X  i^i  A )  C_  X
1211sseli 3373 . . . . . . 7  |-  ( x  e.  ( X  i^i  A )  ->  x  e.  X )
132psref 15399 . . . . . . 7  |-  ( ( R  e.  PosetRel  /\  x  e.  X )  ->  x R x )
1412, 13sylan2 474 . . . . . 6  |-  ( ( R  e.  PosetRel  /\  x  e.  ( X  i^i  A
) )  ->  x R x )
15 brinxp2 4921 . . . . . 6  |-  ( x ( R  i^i  ( A  X.  A ) ) x  <->  ( x  e.  A  /\  x  e.  A  /\  x R x ) )
1610, 10, 14, 15syl3anbrc 1172 . . . . 5  |-  ( ( R  e.  PosetRel  /\  x  e.  ( X  i^i  A
) )  ->  x
( R  i^i  ( A  X.  A ) ) x )
17 vex 2996 . . . . . 6  |-  x  e. 
_V
1817, 17breldm 5065 . . . . 5  |-  ( x ( R  i^i  ( A  X.  A ) ) x  ->  x  e.  dom  ( R  i^i  ( A  X.  A ) ) )
1916, 18syl 16 . . . 4  |-  ( ( R  e.  PosetRel  /\  x  e.  ( X  i^i  A
) )  ->  x  e.  dom  ( R  i^i  ( A  X.  A
) ) )
2019ex 434 . . 3  |-  ( R  e.  PosetRel  ->  ( x  e.  ( X  i^i  A
)  ->  x  e.  dom  ( R  i^i  ( A  X.  A ) ) ) )
2120ssrdv 3383 . 2  |-  ( R  e.  PosetRel  ->  ( X  i^i  A )  C_  dom  ( R  i^i  ( A  X.  A ) ) )
227, 21eqssd 3394 1  |-  ( R  e.  PosetRel  ->  dom  ( R  i^i  ( A  X.  A
) )  =  ( X  i^i  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    i^i cin 3348    C_ wss 3349   class class class wbr 4313    X. cxp 4859   dom cdm 4861   PosetRelcps 15389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pr 4552
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-br 4314  df-opab 4372  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ps 15391
This theorem is referenced by:  psssdm  15407  ordtrest  18828
  Copyright terms: Public domain W3C validator