MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psss Structured version   Unicode version

Theorem psss 16448
Description: Any subset of a partially ordered set is partially ordered. (Contributed by FL, 24-Jan-2010.)
Assertion
Ref Expression
psss  |-  ( R  e.  PosetRel  ->  ( R  i^i  ( A  X.  A
) )  e.  PosetRel )

Proof of Theorem psss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3682 . . 3  |-  ( R  i^i  ( A  X.  A ) )  C_  R
2 psrel 16437 . . 3  |-  ( R  e.  PosetRel  ->  Rel  R )
3 relss 4938 . . 3  |-  ( ( R  i^i  ( A  X.  A ) ) 
C_  R  ->  ( Rel  R  ->  Rel  ( R  i^i  ( A  X.  A ) ) ) )
41, 2, 3mpsyl 65 . 2  |-  ( R  e.  PosetRel  ->  Rel  ( R  i^i  ( A  X.  A
) ) )
5 pstr2 16439 . . 3  |-  ( R  e.  PosetRel  ->  ( R  o.  R )  C_  R
)
6 trinxp 5241 . . 3  |-  ( ( R  o.  R ) 
C_  R  ->  (
( R  i^i  ( A  X.  A ) )  o.  ( R  i^i  ( A  X.  A
) ) )  C_  ( R  i^i  ( A  X.  A ) ) )
75, 6syl 17 . 2  |-  ( R  e.  PosetRel  ->  ( ( R  i^i  ( A  X.  A ) )  o.  ( R  i^i  ( A  X.  A ) ) )  C_  ( R  i^i  ( A  X.  A
) ) )
8 uniin 4236 . . . . . 6  |-  U. ( R  i^i  ( A  X.  A ) )  C_  ( U. R  i^i  U. ( A  X.  A
) )
98unissi 4239 . . . . 5  |-  U. U. ( R  i^i  ( A  X.  A ) ) 
C_  U. ( U. R  i^i  U. ( A  X.  A ) )
10 uniin 4236 . . . . 5  |-  U. ( U. R  i^i  U. ( A  X.  A ) ) 
C_  ( U. U. R  i^i  U. U. ( A  X.  A ) )
119, 10sstri 3473 . . . 4  |-  U. U. ( R  i^i  ( A  X.  A ) ) 
C_  ( U. U. R  i^i  U. U. ( A  X.  A ) )
12 elin 3649 . . . . . 6  |-  ( x  e.  ( U. U. R  i^i  U. U. ( A  X.  A ) )  <-> 
( x  e.  U. U. R  /\  x  e. 
U. U. ( A  X.  A ) ) )
13 unixpid 5387 . . . . . . . . 9  |-  U. U. ( A  X.  A
)  =  A
1413eleq2i 2500 . . . . . . . 8  |-  ( x  e.  U. U. ( A  X.  A )  <->  x  e.  A )
15 simprr 764 . . . . . . . . . 10  |-  ( ( R  e.  PosetRel  /\  (
x  e.  U. U. R  /\  x  e.  A
) )  ->  x  e.  A )
16 psdmrn 16441 . . . . . . . . . . . . . . 15  |-  ( R  e.  PosetRel  ->  ( dom  R  =  U. U. R  /\  ran  R  =  U. U. R ) )
1716simpld 460 . . . . . . . . . . . . . 14  |-  ( R  e.  PosetRel  ->  dom  R  =  U. U. R )
1817eleq2d 2492 . . . . . . . . . . . . 13  |-  ( R  e.  PosetRel  ->  ( x  e. 
dom  R  <->  x  e.  U. U. R ) )
1918biimpar 487 . . . . . . . . . . . 12  |-  ( ( R  e.  PosetRel  /\  x  e.  U. U. R )  ->  x  e.  dom  R )
20 eqid 2422 . . . . . . . . . . . . 13  |-  dom  R  =  dom  R
2120psref 16442 . . . . . . . . . . . 12  |-  ( ( R  e.  PosetRel  /\  x  e.  dom  R )  ->  x R x )
2219, 21syldan 472 . . . . . . . . . . 11  |-  ( ( R  e.  PosetRel  /\  x  e.  U. U. R )  ->  x R x )
2322adantrr 721 . . . . . . . . . 10  |-  ( ( R  e.  PosetRel  /\  (
x  e.  U. U. R  /\  x  e.  A
) )  ->  x R x )
24 brinxp2 4912 . . . . . . . . . 10  |-  ( x ( R  i^i  ( A  X.  A ) ) x  <->  ( x  e.  A  /\  x  e.  A  /\  x R x ) )
2515, 15, 23, 24syl3anbrc 1189 . . . . . . . . 9  |-  ( ( R  e.  PosetRel  /\  (
x  e.  U. U. R  /\  x  e.  A
) )  ->  x
( R  i^i  ( A  X.  A ) ) x )
2625expr 618 . . . . . . . 8  |-  ( ( R  e.  PosetRel  /\  x  e.  U. U. R )  ->  ( x  e.  A  ->  x ( R  i^i  ( A  X.  A ) ) x ) )
2714, 26syl5bi 220 . . . . . . 7  |-  ( ( R  e.  PosetRel  /\  x  e.  U. U. R )  ->  ( x  e. 
U. U. ( A  X.  A )  ->  x
( R  i^i  ( A  X.  A ) ) x ) )
2827expimpd 606 . . . . . 6  |-  ( R  e.  PosetRel  ->  ( ( x  e.  U. U. R  /\  x  e.  U. U. ( A  X.  A
) )  ->  x
( R  i^i  ( A  X.  A ) ) x ) )
2912, 28syl5bi 220 . . . . 5  |-  ( R  e.  PosetRel  ->  ( x  e.  ( U. U. R  i^i  U. U. ( A  X.  A ) )  ->  x ( R  i^i  ( A  X.  A ) ) x ) )
3029ralrimiv 2837 . . . 4  |-  ( R  e.  PosetRel  ->  A. x  e.  ( U. U. R  i^i  U.
U. ( A  X.  A ) ) x ( R  i^i  ( A  X.  A ) ) x )
31 ssralv 3525 . . . 4  |-  ( U. U. ( R  i^i  ( A  X.  A ) ) 
C_  ( U. U. R  i^i  U. U. ( A  X.  A ) )  ->  ( A. x  e.  ( U. U. R  i^i  U. U. ( A  X.  A ) ) x ( R  i^i  ( A  X.  A
) ) x  ->  A. x  e.  U. U. ( R  i^i  ( A  X.  A ) ) x ( R  i^i  ( A  X.  A
) ) x ) )
3211, 30, 31mpsyl 65 . . 3  |-  ( R  e.  PosetRel  ->  A. x  e.  U. U. ( R  i^i  ( A  X.  A ) ) x ( R  i^i  ( A  X.  A
) ) x )
331ssbri 4463 . . . . 5  |-  ( x ( R  i^i  ( A  X.  A ) ) y  ->  x R
y )
341ssbri 4463 . . . . 5  |-  ( y ( R  i^i  ( A  X.  A ) ) x  ->  y R x )
35 psasym 16444 . . . . . 6  |-  ( ( R  e.  PosetRel  /\  x R y  /\  y R x )  ->  x  =  y )
36353expib 1208 . . . . 5  |-  ( R  e.  PosetRel  ->  ( ( x R y  /\  y R x )  ->  x  =  y )
)
3733, 34, 36syl2ani 660 . . . 4  |-  ( R  e.  PosetRel  ->  ( ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) x )  ->  x  =  y ) )
3837alrimivv 1764 . . 3  |-  ( R  e.  PosetRel  ->  A. x A. y
( ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) x )  ->  x  =  y ) )
39 asymref2 5233 . . 3  |-  ( ( ( R  i^i  ( A  X.  A ) )  i^i  `' ( R  i^i  ( A  X.  A ) ) )  =  (  _I  |`  U. U. ( R  i^i  ( A  X.  A ) ) )  <->  ( A. x  e.  U. U. ( R  i^i  ( A  X.  A ) ) x ( R  i^i  ( A  X.  A ) ) x  /\  A. x A. y ( ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) x )  ->  x  =  y ) ) )
4032, 38, 39sylanbrc 668 . 2  |-  ( R  e.  PosetRel  ->  ( ( R  i^i  ( A  X.  A ) )  i^i  `' ( R  i^i  ( A  X.  A
) ) )  =  (  _I  |`  U. U. ( R  i^i  ( A  X.  A ) ) ) )
41 inex1g 4564 . . 3  |-  ( R  e.  PosetRel  ->  ( R  i^i  ( A  X.  A
) )  e.  _V )
42 isps 16436 . . 3  |-  ( ( R  i^i  ( A  X.  A ) )  e.  _V  ->  (
( R  i^i  ( A  X.  A ) )  e.  PosetRel 
<->  ( Rel  ( R  i^i  ( A  X.  A ) )  /\  ( ( R  i^i  ( A  X.  A
) )  o.  ( R  i^i  ( A  X.  A ) ) ) 
C_  ( R  i^i  ( A  X.  A
) )  /\  (
( R  i^i  ( A  X.  A ) )  i^i  `' ( R  i^i  ( A  X.  A ) ) )  =  (  _I  |`  U. U. ( R  i^i  ( A  X.  A ) ) ) ) ) )
4341, 42syl 17 . 2  |-  ( R  e.  PosetRel  ->  ( ( R  i^i  ( A  X.  A ) )  e.  PosetRel  <->  ( Rel  ( R  i^i  ( A  X.  A
) )  /\  (
( R  i^i  ( A  X.  A ) )  o.  ( R  i^i  ( A  X.  A
) ) )  C_  ( R  i^i  ( A  X.  A ) )  /\  ( ( R  i^i  ( A  X.  A ) )  i^i  `' ( R  i^i  ( A  X.  A
) ) )  =  (  _I  |`  U. U. ( R  i^i  ( A  X.  A ) ) ) ) ) )
444, 7, 40, 43mpbir3and 1188 1  |-  ( R  e.  PosetRel  ->  ( R  i^i  ( A  X.  A
) )  e.  PosetRel )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982   A.wal 1435    = wceq 1437    e. wcel 1868   A.wral 2775   _Vcvv 3081    i^i cin 3435    C_ wss 3436   U.cuni 4216   class class class wbr 4420    _I cid 4760    X. cxp 4848   `'ccnv 4849   dom cdm 4850   ran crn 4851    |` cres 4852    o. ccom 4854   Rel wrel 4855   PosetRelcps 16432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4552  ax-pr 4657
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-rab 2784  df-v 3083  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-br 4421  df-opab 4480  df-id 4765  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ps 16434
This theorem is referenced by:  tsrss  16457  ordtrest2  20207
  Copyright terms: Public domain W3C validator