MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psslinpr Structured version   Unicode version

Theorem psslinpr 9398
Description: Proper subset is a linear ordering on positive reals. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
psslinpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  C.  B  \/  A  =  B  \/  B  C.  A ) )

Proof of Theorem psslinpr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 9358 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  x  e.  Q. )
2 prub 9361 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  P.  /\  y  e.  B )  /\  x  e.  Q. )  ->  ( -.  x  e.  B  ->  y  <Q  x ) )
31, 2sylan2 472 . . . . . . . . . . . 12  |-  ( ( ( B  e.  P.  /\  y  e.  B )  /\  ( A  e. 
P.  /\  x  e.  A ) )  -> 
( -.  x  e.  B  ->  y  <Q  x ) )
4 prcdnq 9360 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  ( y  <Q  x  ->  y  e.  A ) )
54adantl 464 . . . . . . . . . . . 12  |-  ( ( ( B  e.  P.  /\  y  e.  B )  /\  ( A  e. 
P.  /\  x  e.  A ) )  -> 
( y  <Q  x  ->  y  e.  A ) )
63, 5syld 44 . . . . . . . . . . 11  |-  ( ( ( B  e.  P.  /\  y  e.  B )  /\  ( A  e. 
P.  /\  x  e.  A ) )  -> 
( -.  x  e.  B  ->  y  e.  A ) )
76exp43 610 . . . . . . . . . 10  |-  ( B  e.  P.  ->  (
y  e.  B  -> 
( A  e.  P.  ->  ( x  e.  A  ->  ( -.  x  e.  B  ->  y  e.  A ) ) ) ) )
87com3r 79 . . . . . . . . 9  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( y  e.  B  -> 
( x  e.  A  ->  ( -.  x  e.  B  ->  y  e.  A ) ) ) ) )
98imp 427 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  ( x  e.  A  ->  ( -.  x  e.  B  ->  y  e.  A ) ) ) )
109imp4a 587 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  ( ( x  e.  A  /\  -.  x  e.  B )  ->  y  e.  A ) ) )
1110com23 78 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  A  /\  -.  x  e.  B )  ->  (
y  e.  B  -> 
y  e.  A ) ) )
1211alrimdv 1726 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  A  /\  -.  x  e.  B )  ->  A. y
( y  e.  B  ->  y  e.  A ) ) )
1312exlimdv 1729 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. x ( x  e.  A  /\  -.  x  e.  B
)  ->  A. y
( y  e.  B  ->  y  e.  A ) ) )
14 nss 3547 . . . . 5  |-  ( -.  A  C_  B  <->  E. x
( x  e.  A  /\  -.  x  e.  B
) )
15 sspss 3589 . . . . 5  |-  ( A 
C_  B  <->  ( A  C.  B  \/  A  =  B ) )
1614, 15xchnxbi 306 . . . 4  |-  ( -.  ( A  C.  B  \/  A  =  B
)  <->  E. x ( x  e.  A  /\  -.  x  e.  B )
)
17 sspss 3589 . . . . 5  |-  ( B 
C_  A  <->  ( B  C.  A  \/  B  =  A ) )
18 dfss2 3478 . . . . 5  |-  ( B 
C_  A  <->  A. y
( y  e.  B  ->  y  e.  A ) )
1917, 18bitr3i 251 . . . 4  |-  ( ( B  C.  A  \/  B  =  A )  <->  A. y ( y  e.  B  ->  y  e.  A ) )
2013, 16, 193imtr4g 270 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( -.  ( A 
C.  B  \/  A  =  B )  ->  ( B  C.  A  \/  B  =  A ) ) )
2120orrd 376 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  B  =  A ) ) )
22 df-3or 972 . . 3  |-  ( ( A  C.  B  \/  A  =  B  \/  B  C.  A )  <->  ( ( A  C.  B  \/  A  =  B )  \/  B  C.  A ) )
23 or32 525 . . 3  |-  ( ( ( A  C.  B  \/  A  =  B
)  \/  B  C.  A )  <->  ( ( A  C.  B  \/  B  C.  A )  \/  A  =  B ) )
24 orordir 529 . . . 4  |-  ( ( ( A  C.  B  \/  B  C.  A )  \/  A  =  B )  <->  ( ( A 
C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  A  =  B ) ) )
25 eqcom 2463 . . . . . 6  |-  ( B  =  A  <->  A  =  B )
2625orbi2i 517 . . . . 5  |-  ( ( B  C.  A  \/  B  =  A )  <->  ( B  C.  A  \/  A  =  B )
)
2726orbi2i 517 . . . 4  |-  ( ( ( A  C.  B  \/  A  =  B
)  \/  ( B 
C.  A  \/  B  =  A ) )  <->  ( ( A  C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  A  =  B ) ) )
2824, 27bitr4i 252 . . 3  |-  ( ( ( A  C.  B  \/  B  C.  A )  \/  A  =  B )  <->  ( ( A 
C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  B  =  A ) ) )
2922, 23, 283bitri 271 . 2  |-  ( ( A  C.  B  \/  A  =  B  \/  B  C.  A )  <->  ( ( A  C.  B  \/  A  =  B )  \/  ( B  C.  A  \/  B  =  A ) ) )
3021, 29sylibr 212 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  C.  B  \/  A  =  B  \/  B  C.  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 366    /\ wa 367    \/ w3o 970   A.wal 1396    = wceq 1398   E.wex 1617    e. wcel 1823    C_ wss 3461    C. wpss 3462   class class class wbr 4439   Q.cnq 9219    <Q cltq 9225   P.cnp 9226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-oadd 7126  df-omul 7127  df-er 7303  df-ni 9239  df-mi 9241  df-lti 9242  df-ltpq 9277  df-enq 9278  df-nq 9279  df-ltnq 9285  df-np 9348
This theorem is referenced by:  ltsopr  9399
  Copyright terms: Public domain W3C validator