MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq12d Structured version   Unicode version

Theorem psseq12d 3593
Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
Hypotheses
Ref Expression
psseq1d.1  |-  ( ph  ->  A  =  B )
psseq12d.2  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
psseq12d  |-  ( ph  ->  ( A  C.  C  <->  B 
C.  D ) )

Proof of Theorem psseq12d
StepHypRef Expression
1 psseq1d.1 . . 3  |-  ( ph  ->  A  =  B )
21psseq1d 3591 . 2  |-  ( ph  ->  ( A  C.  C  <->  B 
C.  C ) )
3 psseq12d.2 . . 3  |-  ( ph  ->  C  =  D )
43psseq2d 3592 . 2  |-  ( ph  ->  ( B  C.  C  <->  B 
C.  D ) )
52, 4bitrd 253 1  |-  ( ph  ->  ( A  C.  C  <->  B 
C.  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1374    C. wpss 3472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2448  df-cleq 2454  df-clel 2457  df-ne 2659  df-in 3478  df-ss 3485  df-pss 3487
This theorem is referenced by:  fin23lem32  8715  fin23lem34  8717  fin23lem35  8718  fin23lem41  8723  isf32lem5  8728  isf32lem6  8729  isf32lem11  8734  compssiso  8745  canthp1lem2  9022  chnle  26096
  Copyright terms: Public domain W3C validator