MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssdifcom2 Structured version   Unicode version

Theorem pssdifcom2 3888
Description: Two ways to express non-covering pairs of subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.)
Assertion
Ref Expression
pssdifcom2  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( B  C.  ( C  \  A )  <->  A  C.  ( C  \  B ) ) )

Proof of Theorem pssdifcom2
StepHypRef Expression
1 ssconb 3604 . . . 4  |-  ( ( B  C_  C  /\  A  C_  C )  -> 
( B  C_  ( C  \  A )  <->  A  C_  ( C  \  B ) ) )
21ancoms 454 . . 3  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( B  C_  ( C  \  A )  <->  A  C_  ( C  \  B ) ) )
3 difcom 3886 . . . . 5  |-  ( ( C  \  A ) 
C_  B  <->  ( C  \  B )  C_  A
)
43a1i 11 . . . 4  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( ( C  \  A )  C_  B  <->  ( C  \  B ) 
C_  A ) )
54notbid 295 . . 3  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( -.  ( C 
\  A )  C_  B 
<->  -.  ( C  \  B )  C_  A
) )
62, 5anbi12d 715 . 2  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( ( B  C_  ( C  \  A )  /\  -.  ( C 
\  A )  C_  B )  <->  ( A  C_  ( C  \  B
)  /\  -.  ( C  \  B )  C_  A ) ) )
7 dfpss3 3557 . 2  |-  ( B 
C.  ( C  \  A )  <->  ( B  C_  ( C  \  A
)  /\  -.  ( C  \  A )  C_  B ) )
8 dfpss3 3557 . 2  |-  ( A 
C.  ( C  \  B )  <->  ( A  C_  ( C  \  B
)  /\  -.  ( C  \  B )  C_  A ) )
96, 7, 83bitr4g 291 1  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( B  C.  ( C  \  A )  <->  A  C.  ( C  \  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    \ cdif 3439    C_ wss 3442    C. wpss 3443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-v 3089  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458
This theorem is referenced by:  fin2i2  8746
  Copyright terms: Public domain W3C validator