Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssdifcom2 Structured version   Unicode version

Theorem pssdifcom2 3919
 Description: Two ways to express non-covering pairs of subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.)
Assertion
Ref Expression
pssdifcom2

Proof of Theorem pssdifcom2
StepHypRef Expression
1 ssconb 3642 . . . 4
21ancoms 453 . . 3
3 difcom 3917 . . . . 5
43a1i 11 . . . 4
54notbid 294 . . 3
62, 5anbi12d 710 . 2
7 dfpss3 3595 . 2
8 dfpss3 3595 . 2
96, 7, 83bitr4g 288 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 184   wa 369   cdif 3478   wss 3481   wpss 3482 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497 This theorem is referenced by:  fin2i2  8710
 Copyright terms: Public domain W3C validator