MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrval Structured version   Visualization version   Unicode version

Theorem psrval 18641
Description: Value of the multivariate power series structure. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrval.s  |-  S  =  ( I mPwSer  R )
psrval.k  |-  K  =  ( Base `  R
)
psrval.a  |-  .+  =  ( +g  `  R )
psrval.m  |-  .x.  =  ( .r `  R )
psrval.o  |-  O  =  ( TopOpen `  R )
psrval.d  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
psrval.b  |-  ( ph  ->  B  =  ( K  ^m  D ) )
psrval.p  |-  .+b  =  (  oF  .+  |`  ( B  X.  B ) )
psrval.t  |-  .X.  =  ( f  e.  B ,  g  e.  B  |->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( f `  x ) 
.x.  ( g `  ( k  oF  -  x ) ) ) ) ) ) )
psrval.v  |-  .xb  =  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  oF  .x.  f
) )
psrval.j  |-  ( ph  ->  J  =  ( Xt_ `  ( D  X.  { O } ) ) )
psrval.i  |-  ( ph  ->  I  e.  W )
psrval.r  |-  ( ph  ->  R  e.  X )
Assertion
Ref Expression
psrval  |-  ( ph  ->  S  =  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
Distinct variable groups:    y, h    f, g, k, x, ph    B, f, g, k, x   
f, h, I, g, k, x    R, f, g, k, x    y,
f, D, g, k, x
Allowed substitution hints:    ph( y, h)    B( y, h)    D( h)    .+ ( x, y, f, g, h, k)    .+b ( x, y, f, g, h, k)    R( y, h)    S( x, y, f, g, h, k)    .xb (
x, y, f, g, h, k)    .x. ( x, y, f, g, h, k)    .X. ( x, y, f, g, h, k)    I( y)    J( x, y, f, g, h, k)    K( x, y, f, g, h, k)    O( x, y, f, g, h, k)    W( x, y, f, g, h, k)    X( x, y, f, g, h, k)

Proof of Theorem psrval
Dummy variables  i 
r  b  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrval.s . 2  |-  S  =  ( I mPwSer  R )
2 df-psr 18635 . . . 4  |- mPwSer  =  ( i  e.  _V , 
r  e.  _V  |->  [_ { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
32a1i 11 . . 3  |-  ( ph  -> mPwSer 
=  ( i  e. 
_V ,  r  e. 
_V  |->  [_ { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  / 
d ]_ [_ ( (
Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) ) )
4 simprl 769 . . . . . . . 8  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  -> 
i  =  I )
54oveq2d 6336 . . . . . . 7  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  -> 
( NN0  ^m  i
)  =  ( NN0 
^m  I ) )
6 rabeq 3050 . . . . . . 7  |-  ( ( NN0  ^m  i )  =  ( NN0  ^m  I )  ->  { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } )
75, 6syl 17 . . . . . 6  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  ->  { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  =  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin } )
8 psrval.d . . . . . 6  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
97, 8syl6eqr 2514 . . . . 5  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  ->  { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  =  D )
109csbeq1d 3382 . . . 4  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  ->  [_ { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  [_ D  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
11 ovex 6348 . . . . . . 7  |-  ( NN0 
^m  i )  e. 
_V
1211rabex 4571 . . . . . 6  |-  { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  e.  _V
139, 12syl6eqelr 2549 . . . . 5  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  ->  D  e.  _V )
14 simplrr 776 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  r  =  R )
1514fveq2d 5896 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  ( Base `  r )  =  ( Base `  R
) )
16 psrval.k . . . . . . . . . 10  |-  K  =  ( Base `  R
)
1715, 16syl6eqr 2514 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  ( Base `  r )  =  K )
18 simpr 467 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  d  =  D )
1917, 18oveq12d 6338 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  (
( Base `  r )  ^m  d )  =  ( K  ^m  D ) )
20 psrval.b . . . . . . . . 9  |-  ( ph  ->  B  =  ( K  ^m  D ) )
2120ad2antrr 737 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  B  =  ( K  ^m  D ) )
2219, 21eqtr4d 2499 . . . . . . 7  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  (
( Base `  r )  ^m  d )  =  B )
2322csbeq1d 3382 . . . . . 6  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  [_ B  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  (  oF ( +g  `  r
)  |`  ( b  X.  b ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r 
gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) ) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
24 ovex 6348 . . . . . . . 8  |-  ( (
Base `  r )  ^m  d )  e.  _V
2522, 24syl6eqelr 2549 . . . . . . 7  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  B  e.  _V )
26 simpr 467 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  b  =  B )
2726opeq2d 4187 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  <. ( Base `  ndx ) ,  b >.  =  <. (
Base `  ndx ) ,  B >. )
2814adantr 471 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  r  =  R )
2928fveq2d 5896 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( +g  `  r )  =  ( +g  `  R
) )
30 psrval.a . . . . . . . . . . . . . 14  |-  .+  =  ( +g  `  R )
3129, 30syl6eqr 2514 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( +g  `  r )  = 
.+  )
32 ofeq 6565 . . . . . . . . . . . . 13  |-  ( ( +g  `  r )  =  .+  ->  oF ( +g  `  r
)  =  oF  .+  )
3331, 32syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  oF ( +g  `  r
)  =  oF  .+  )
3426, 26xpeq12d 4881 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
b  X.  b )  =  ( B  X.  B ) )
3533, 34reseq12d 5128 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (  oF ( +g  `  r )  |`  (
b  X.  b ) )  =  (  oF  .+  |`  ( B  X.  B ) ) )
36 psrval.p . . . . . . . . . . 11  |-  .+b  =  (  oF  .+  |`  ( B  X.  B ) )
3735, 36syl6eqr 2514 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (  oF ( +g  `  r )  |`  (
b  X.  b ) )  =  .+b  )
3837opeq2d 4187 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >.  =  <. ( +g  `  ndx ) ,  .+b  >. )
3918adantr 471 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  d  =  D )
40 rabeq 3050 . . . . . . . . . . . . . . . 16  |-  ( d  =  D  ->  { y  e.  d  |  y  oR  <_  k }  =  { y  e.  D  |  y  oR  <_  k } )
4139, 40syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  { y  e.  d  |  y  oR  <_  k }  =  { y  e.  D  |  y  oR  <_  k } )
4228fveq2d 5896 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( .r `  r )  =  ( .r `  R
) )
43 psrval.m . . . . . . . . . . . . . . . . 17  |-  .x.  =  ( .r `  R )
4442, 43syl6eqr 2514 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( .r `  r )  = 
.x.  )
4544oveqd 6337 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
( f `  x
) ( .r `  r ) ( g `
 ( k  oF  -  x ) ) )  =  ( ( f `  x
)  .x.  ( g `  ( k  oF  -  x ) ) ) )
4641, 45mpteq12dv 4497 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) )  =  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( f `  x )  .x.  (
g `  ( k  oF  -  x
) ) ) ) )
4728, 46oveq12d 6338 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
r  gsumg  ( x  e.  {
y  e.  d  |  y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  r
) ( g `  ( k  oF  -  x ) ) ) ) )  =  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( f `  x ) 
.x.  ( g `  ( k  oF  -  x ) ) ) ) ) )
4839, 47mpteq12dv 4497 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
k  e.  d  |->  ( r  gsumg  ( x  e.  {
y  e.  d  |  y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  r
) ( g `  ( k  oF  -  x ) ) ) ) ) )  =  ( k  e.  D  |->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( f `  x )  .x.  (
g `  ( k  oF  -  x
) ) ) ) ) ) )
4926, 26, 48mpt2eq123dv 6385 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  {
y  e.  d  |  y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  r
) ( g `  ( k  oF  -  x ) ) ) ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( k  e.  D  |->  ( R 
gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( f `
 x )  .x.  ( g `  (
k  oF  -  x ) ) ) ) ) ) ) )
50 psrval.t . . . . . . . . . . 11  |-  .X.  =  ( f  e.  B ,  g  e.  B  |->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( f `  x ) 
.x.  ( g `  ( k  oF  -  x ) ) ) ) ) ) )
5149, 50syl6eqr 2514 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  {
y  e.  d  |  y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  r
) ( g `  ( k  oF  -  x ) ) ) ) ) ) )  =  .X.  )
5251opeq2d 4187 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b 
|->  ( k  e.  d 
|->  ( r  gsumg  ( x  e.  {
y  e.  d  |  y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  r
) ( g `  ( k  oF  -  x ) ) ) ) ) ) ) >.  =  <. ( .r `  ndx ) ,  .X.  >. )
5327, 38, 52tpeq123d 4079 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  { <. (
Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  =  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.X.  >. } )
5428opeq2d 4187 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  <. (Scalar ` 
ndx ) ,  r
>.  =  <. (Scalar `  ndx ) ,  R >. )
5517adantr 471 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( Base `  r )  =  K )
56 ofeq 6565 . . . . . . . . . . . . . 14  |-  ( ( .r `  r )  =  .x.  ->  oF ( .r `  r )  =  oF  .x.  )
5744, 56syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  oF ( .r `  r )  =  oF  .x.  )
5839xpeq1d 4879 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
d  X.  { x } )  =  ( D  X.  { x } ) )
59 eqidd 2463 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  f  =  f )
6057, 58, 59oveq123d 6341 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
( d  X.  {
x } )  oF ( .r `  r ) f )  =  ( ( D  X.  { x }
)  oF  .x.  f ) )
6155, 26, 60mpt2eq123dv 6385 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )  =  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x }
)  oF  .x.  f ) ) )
62 psrval.v . . . . . . . . . . 11  |-  .xb  =  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  oF  .x.  f
) )
6361, 62syl6eqr 2514 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )  =  .xb  )
6463opeq2d 4187 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  r ) ,  f  e.  b  |->  ( ( d  X. 
{ x } )  oF ( .r
`  r ) f ) ) >.  =  <. ( .s `  ndx ) ,  .xb  >. )
6528fveq2d 5896 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( TopOpen
`  r )  =  ( TopOpen `  R )
)
66 psrval.o . . . . . . . . . . . . . . 15  |-  O  =  ( TopOpen `  R )
6765, 66syl6eqr 2514 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( TopOpen
`  r )  =  O )
6867sneqd 3992 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  { (
TopOpen `  r ) }  =  { O }
)
6939, 68xpeq12d 4881 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
d  X.  { (
TopOpen `  r ) } )  =  ( D  X.  { O }
) )
7069fveq2d 5896 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( Xt_ `  ( d  X. 
{ ( TopOpen `  r
) } ) )  =  ( Xt_ `  ( D  X.  { O }
) ) )
71 psrval.j . . . . . . . . . . . 12  |-  ( ph  ->  J  =  ( Xt_ `  ( D  X.  { O } ) ) )
7271ad3antrrr 741 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  J  =  ( Xt_ `  ( D  X.  { O }
) ) )
7370, 72eqtr4d 2499 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( Xt_ `  ( d  X. 
{ ( TopOpen `  r
) } ) )  =  J )
7473opeq2d 4187 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( d  X.  { ( TopOpen `  r
) } ) )
>.  =  <. (TopSet `  ndx ) ,  J >. )
7554, 64, 74tpeq123d 4079 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. }  =  { <. (Scalar ` 
ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  .xb  >. ,  <. (TopSet `  ndx ) ,  J >. } )
7653, 75uneq12d 3601 . . . . . . 7  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  (  oF ( +g  `  r
)  |`  ( b  X.  b ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r 
gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) ) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
7725, 76csbied 3402 . . . . . 6  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  [_ B  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  (  oF ( +g  `  r
)  |`  ( b  X.  b ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r 
gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) ) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
7823, 77eqtrd 2496 . . . . 5  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
7913, 78csbied 3402 . . . 4  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  ->  [_ D  /  d ]_ [_ ( ( Base `  r )  ^m  d
)  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  (  oF ( +g  `  r
)  |`  ( b  X.  b ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r 
gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) ) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
8010, 79eqtrd 2496 . . 3  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  ->  [_ { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
81 psrval.i . . . 4  |-  ( ph  ->  I  e.  W )
82 elex 3066 . . . 4  |-  ( I  e.  W  ->  I  e.  _V )
8381, 82syl 17 . . 3  |-  ( ph  ->  I  e.  _V )
84 psrval.r . . . 4  |-  ( ph  ->  R  e.  X )
85 elex 3066 . . . 4  |-  ( R  e.  X  ->  R  e.  _V )
8684, 85syl 17 . . 3  |-  ( ph  ->  R  e.  _V )
87 tpex 6622 . . . . 5  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  e.  _V
88 tpex 6622 . . . . 5  |-  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  .xb  >. ,  <. (TopSet `  ndx ) ,  J >. }  e.  _V
8987, 88unex 6621 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } )  e.  _V
9089a1i 11 . . 3  |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } )  e.  _V )
913, 80, 83, 86, 90ovmpt2d 6456 . 2  |-  ( ph  ->  ( I mPwSer  R )  =  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
921, 91syl5eq 2508 1  |-  ( ph  ->  S  =  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375    = wceq 1455    e. wcel 1898   {crab 2753   _Vcvv 3057   [_csb 3375    u. cun 3414   {csn 3980   {ctp 3984   <.cop 3986   class class class wbr 4418    |-> cmpt 4477    X. cxp 4854   `'ccnv 4855    |` cres 4858   "cima 4859   ` cfv 5605  (class class class)co 6320    |-> cmpt2 6322    oFcof 6561    oRcofr 6562    ^m cmap 7503   Fincfn 7600    <_ cle 9707    - cmin 9891   NNcn 10642   NN0cn0 10903   ndxcnx 15173   Basecbs 15176   +g cplusg 15245   .rcmulr 15246  Scalarcsca 15248   .scvsca 15249  TopSetcts 15251   TopOpenctopn 15375   Xt_cpt 15392    gsumg cgsu 15394   mPwSer cmps 18630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4541  ax-nul 4550  ax-pr 4656  ax-un 6615
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-br 4419  df-opab 4478  df-mpt 4479  df-id 4771  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-res 4868  df-iota 5569  df-fun 5607  df-fv 5613  df-ov 6323  df-oprab 6324  df-mpt2 6325  df-of 6563  df-psr 18635
This theorem is referenced by:  psrbas  18657  psrplusg  18660  psrmulr  18663  psrsca  18668  psrvscafval  18669
  Copyright terms: Public domain W3C validator