MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrridmOLD Structured version   Unicode version

Theorem psrridmOLD 17858
Description: The identity element of the ring of power series is a right identity. (Contributed by Mario Carneiro, 29-Dec-2014.) Obsolete version of psrridm 17857 as of 8-Jul-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
psrrng.s  |-  S  =  ( I mPwSer  R )
psrrng.i  |-  ( ph  ->  I  e.  V )
psrrng.r  |-  ( ph  ->  R  e.  Ring )
psr1cl.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psr1cl.z  |-  .0.  =  ( 0g `  R )
psr1cl.o  |-  .1.  =  ( 1r `  R )
psr1cl.u  |-  U  =  ( x  e.  D  |->  if ( x  =  ( I  X.  {
0 } ) ,  .1.  ,  .0.  )
)
psr1cl.b  |-  B  =  ( Base `  S
)
psrlidm.t  |-  .x.  =  ( .r `  S )
psrlidm.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
psrridmOLD  |-  ( ph  ->  ( X  .x.  U
)  =  X )
Distinct variable groups:    x, f,  .0.    f, I, x    x, B    R, f, x    x, D    f, X, x    ph, x    x, V    x,  .x.    x, S   
x,  .1.
Allowed substitution hints:    ph( f)    B( f)    D( f)    S( f)    .x. ( f)    U( x, f)    .1. ( f)    V( f)

Proof of Theorem psrridmOLD
Dummy variables  y 
z  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrrng.s . . . 4  |-  S  =  ( I mPwSer  R )
2 eqid 2467 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
3 psr1cl.d . . . 4  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
4 psr1cl.b . . . 4  |-  B  =  ( Base `  S
)
5 psrlidm.t . . . . 5  |-  .x.  =  ( .r `  S )
6 psrrng.r . . . . 5  |-  ( ph  ->  R  e.  Ring )
7 psrlidm.x . . . . 5  |-  ( ph  ->  X  e.  B )
8 psrrng.i . . . . . 6  |-  ( ph  ->  I  e.  V )
9 psr1cl.z . . . . . 6  |-  .0.  =  ( 0g `  R )
10 psr1cl.o . . . . . 6  |-  .1.  =  ( 1r `  R )
11 psr1cl.u . . . . . 6  |-  U  =  ( x  e.  D  |->  if ( x  =  ( I  X.  {
0 } ) ,  .1.  ,  .0.  )
)
121, 8, 6, 3, 9, 10, 11, 4psr1cl 17854 . . . . 5  |-  ( ph  ->  U  e.  B )
131, 4, 5, 6, 7, 12psrmulcl 17840 . . . 4  |-  ( ph  ->  ( X  .x.  U
)  e.  B )
141, 2, 3, 4, 13psrelbas 17831 . . 3  |-  ( ph  ->  ( X  .x.  U
) : D --> ( Base `  R ) )
15 ffn 5731 . . 3  |-  ( ( X  .x.  U ) : D --> ( Base `  R )  ->  ( X  .x.  U )  Fn  D )
1614, 15syl 16 . 2  |-  ( ph  ->  ( X  .x.  U
)  Fn  D )
171, 2, 3, 4, 7psrelbas 17831 . . 3  |-  ( ph  ->  X : D --> ( Base `  R ) )
18 ffn 5731 . . 3  |-  ( X : D --> ( Base `  R )  ->  X  Fn  D )
1917, 18syl 16 . 2  |-  ( ph  ->  X  Fn  D )
20 eqid 2467 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
217adantr 465 . . . 4  |-  ( (
ph  /\  y  e.  D )  ->  X  e.  B )
2212adantr 465 . . . 4  |-  ( (
ph  /\  y  e.  D )  ->  U  e.  B )
23 simpr 461 . . . 4  |-  ( (
ph  /\  y  e.  D )  ->  y  e.  D )
241, 4, 20, 5, 3, 21, 22, 23psrmulval 17838 . . 3  |-  ( (
ph  /\  y  e.  D )  ->  (
( X  .x.  U
) `  y )  =  ( R  gsumg  ( z  e.  { g  e.  D  |  g  oR  <_  y }  |->  ( ( X `  z ) ( .r
`  R ) ( U `  ( y  oF  -  z
) ) ) ) ) )
258adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  D )  ->  I  e.  V )
263psrbagf 17813 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  y  e.  D )  ->  y : I --> NN0 )
278, 26sylan 471 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  D )  ->  y : I --> NN0 )
28 nn0re 10804 . . . . . . . . . . 11  |-  ( z  e.  NN0  ->  z  e.  RR )
2928leidd 10119 . . . . . . . . . 10  |-  ( z  e.  NN0  ->  z  <_ 
z )
3029adantl 466 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  NN0 )  ->  z  <_  z )
3125, 27, 30caofref 6550 . . . . . . . 8  |-  ( (
ph  /\  y  e.  D )  ->  y  oR  <_  y )
32 breq1 4450 . . . . . . . . 9  |-  ( g  =  y  ->  (
g  oR  <_ 
y  <->  y  oR  <_  y ) )
3332elrab 3261 . . . . . . . 8  |-  ( y  e.  { g  e.  D  |  g  oR  <_  y }  <->  ( y  e.  D  /\  y  oR  <_  y
) )
3423, 31, 33sylanbrc 664 . . . . . . 7  |-  ( (
ph  /\  y  e.  D )  ->  y  e.  { g  e.  D  |  g  oR 
<_  y } )
3534snssd 4172 . . . . . 6  |-  ( (
ph  /\  y  e.  D )  ->  { y }  C_  { g  e.  D  |  g  oR  <_  y } )
36 resmpt 5323 . . . . . 6  |-  ( { y }  C_  { g  e.  D  |  g  oR  <_  y }  ->  ( ( z  e.  { g  e.  D  |  g  oR  <_  y }  |->  ( ( X `  z ) ( .r
`  R ) ( U `  ( y  oF  -  z
) ) ) )  |`  { y } )  =  ( z  e. 
{ y }  |->  ( ( X `  z
) ( .r `  R ) ( U `
 ( y  oF  -  z ) ) ) ) )
3735, 36syl 16 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  (
( z  e.  {
g  e.  D  | 
g  oR  <_ 
y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) )  |`  { y } )  =  ( z  e.  { y }  |->  ( ( X `
 z ) ( .r `  R ) ( U `  (
y  oF  -  z ) ) ) ) )
3837oveq2d 6300 . . . 4  |-  ( (
ph  /\  y  e.  D )  ->  ( R  gsumg  ( ( z  e. 
{ g  e.  D  |  g  oR 
<_  y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) )  |`  { y } ) )  =  ( R  gsumg  ( z  e.  {
y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) ) ) )
39 rngcmn 17030 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. CMnd
)
406, 39syl 16 . . . . . 6  |-  ( ph  ->  R  e. CMnd )
4140adantr 465 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  R  e. CMnd )
42 ovex 6309 . . . . . . . . 9  |-  ( NN0 
^m  I )  e. 
_V
4342rabex 4598 . . . . . . . 8  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  e.  _V
443, 43eqeltri 2551 . . . . . . 7  |-  D  e. 
_V
4544rabex 4598 . . . . . 6  |-  { g  e.  D  |  g  oR  <_  y }  e.  _V
4645a1i 11 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  { g  e.  D  |  g  oR  <_  y }  e.  _V )
476ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  ->  R  e.  Ring )
4817ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  ->  X : D --> ( Base `  R ) )
49 simpr 461 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
z  e.  { g  e.  D  |  g  oR  <_  y } )
50 breq1 4450 . . . . . . . . . . 11  |-  ( g  =  z  ->  (
g  oR  <_ 
y  <->  z  oR  <_  y ) )
5150elrab 3261 . . . . . . . . . 10  |-  ( z  e.  { g  e.  D  |  g  oR  <_  y }  <->  ( z  e.  D  /\  z  oR  <_  y
) )
5249, 51sylib 196 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( z  e.  D  /\  z  oR 
<_  y ) )
5352simpld 459 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
z  e.  D )
5448, 53ffvelrnd 6022 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( X `  z
)  e.  ( Base `  R ) )
551, 2, 3, 4, 22psrelbas 17831 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  D )  ->  U : D --> ( Base `  R
) )
5655adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  ->  U : D --> ( Base `  R ) )
578ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  ->  I  e.  V )
5823adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
y  e.  D )
593psrbagf 17813 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  z  e.  D )  ->  z : I --> NN0 )
6057, 53, 59syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
z : I --> NN0 )
6152simprd 463 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
z  oR  <_ 
y )
623psrbagcon 17821 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  ( y  e.  D  /\  z : I --> NN0  /\  z  oR  <_  y
) )  ->  (
( y  oF  -  z )  e.  D  /\  ( y  oF  -  z
)  oR  <_ 
y ) )
6357, 58, 60, 61, 62syl13anc 1230 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( ( y  oF  -  z )  e.  D  /\  (
y  oF  -  z )  oR  <_  y ) )
6463simpld 459 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( y  oF  -  z )  e.  D )
6556, 64ffvelrnd 6022 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( U `  (
y  oF  -  z ) )  e.  ( Base `  R
) )
662, 20rngcl 17013 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( X `  z )  e.  ( Base `  R
)  /\  ( U `  ( y  oF  -  z ) )  e.  ( Base `  R
) )  ->  (
( X `  z
) ( .r `  R ) ( U `
 ( y  oF  -  z ) ) )  e.  (
Base `  R )
)
6747, 54, 65, 66syl3anc 1228 . . . . . 6  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( ( X `  z ) ( .r
`  R ) ( U `  ( y  oF  -  z
) ) )  e.  ( Base `  R
) )
68 eqid 2467 . . . . . 6  |-  ( z  e.  { g  e.  D  |  g  oR  <_  y }  |->  ( ( X `  z ) ( .r
`  R ) ( U `  ( y  oF  -  z
) ) ) )  =  ( z  e. 
{ g  e.  D  |  g  oR 
<_  y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) )
6967, 68fmptd 6045 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  (
z  e.  { g  e.  D  |  g  oR  <_  y }  |->  ( ( X `
 z ) ( .r `  R ) ( U `  (
y  oF  -  z ) ) ) ) : { g  e.  D  |  g  oR  <_  y }
--> ( Base `  R
) )
70 eldifi 3626 . . . . . . . . . . 11  |-  ( z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } )  ->  z  e.  { g  e.  D  | 
g  oR  <_ 
y } )
7170, 64sylan2 474 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  ( y  oF  -  z
)  e.  D )
72 eqeq1 2471 . . . . . . . . . . . 12  |-  ( x  =  ( y  oF  -  z )  ->  ( x  =  ( I  X.  {
0 } )  <->  ( y  oF  -  z
)  =  ( I  X.  { 0 } ) ) )
7372ifbid 3961 . . . . . . . . . . 11  |-  ( x  =  ( y  oF  -  z )  ->  if ( x  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  )  =  if (
( y  oF  -  z )  =  ( I  X.  {
0 } ) ,  .1.  ,  .0.  )
)
74 fvex 5876 . . . . . . . . . . . . 13  |-  ( 1r
`  R )  e. 
_V
7510, 74eqeltri 2551 . . . . . . . . . . . 12  |-  .1.  e.  _V
76 fvex 5876 . . . . . . . . . . . . 13  |-  ( 0g
`  R )  e. 
_V
779, 76eqeltri 2551 . . . . . . . . . . . 12  |-  .0.  e.  _V
7875, 77ifex 4008 . . . . . . . . . . 11  |-  if ( ( y  oF  -  z )  =  ( I  X.  {
0 } ) ,  .1.  ,  .0.  )  e.  _V
7973, 11, 78fvmpt 5950 . . . . . . . . . 10  |-  ( ( y  oF  -  z )  e.  D  ->  ( U `  (
y  oF  -  z ) )  =  if ( ( y  oF  -  z
)  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  ) )
8071, 79syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  ( U `  ( y  oF  -  z ) )  =  if ( ( y  oF  -  z )  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  ) )
81 eldifsni 4153 . . . . . . . . . . . . 13  |-  ( z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } )  ->  z  =/=  y )
8281adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  z  =/=  y )
8382necomd 2738 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  y  =/=  z )
84 nn0sscn 10800 . . . . . . . . . . . . . . . 16  |-  NN0  C_  CC
85 fss 5739 . . . . . . . . . . . . . . . 16  |-  ( ( y : I --> NN0  /\  NN0  C_  CC )  ->  y : I --> CC )
8627, 84, 85sylancl 662 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  D )  ->  y : I --> CC )
8786adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
y : I --> CC )
88 fss 5739 . . . . . . . . . . . . . . 15  |-  ( ( z : I --> NN0  /\  NN0  C_  CC )  ->  z : I --> CC )
8960, 84, 88sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
z : I --> CC )
90 ofsubeq0 10533 . . . . . . . . . . . . . 14  |-  ( ( I  e.  V  /\  y : I --> CC  /\  z : I --> CC )  ->  ( ( y  oF  -  z
)  =  ( I  X.  { 0 } )  <->  y  =  z ) )
9157, 87, 89, 90syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( ( y  oF  -  z )  =  ( I  X.  { 0 } )  <-> 
y  =  z ) )
9270, 91sylan2 474 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  ( (
y  oF  -  z )  =  ( I  X.  { 0 } )  <->  y  =  z ) )
9392necon3bbid 2714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  ( -.  ( y  oF  -  z )  =  ( I  X.  {
0 } )  <->  y  =/=  z ) )
9483, 93mpbird 232 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  -.  (
y  oF  -  z )  =  ( I  X.  { 0 } ) )
95 iffalse 3948 . . . . . . . . . 10  |-  ( -.  ( y  oF  -  z )  =  ( I  X.  {
0 } )  ->  if ( ( y  oF  -  z )  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  )  =  .0.  )
9694, 95syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  if (
( y  oF  -  z )  =  ( I  X.  {
0 } ) ,  .1.  ,  .0.  )  =  .0.  )
9780, 96eqtrd 2508 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  ( U `  ( y  oF  -  z ) )  =  .0.  )
9897oveq2d 6300 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  ( ( X `  z )
( .r `  R
) ( U `  ( y  oF  -  z ) ) )  =  ( ( X `  z ) ( .r `  R
)  .0.  ) )
992, 20, 9rngrz 17037 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( X `  z )  e.  ( Base `  R
) )  ->  (
( X `  z
) ( .r `  R )  .0.  )  =  .0.  )
10047, 54, 99syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  { g  e.  D  |  g  oR 
<_  y } )  -> 
( ( X `  z ) ( .r
`  R )  .0.  )  =  .0.  )
10170, 100sylan2 474 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  ( ( X `  z )
( .r `  R
)  .0.  )  =  .0.  )
10298, 101eqtrd 2508 . . . . . 6  |-  ( ( ( ph  /\  y  e.  D )  /\  z  e.  ( { g  e.  D  |  g  oR  <_  y }  \  { y } ) )  ->  ( ( X `  z )
( .r `  R
) ( U `  ( y  oF  -  z ) ) )  =  .0.  )
103102suppss2OLD 6514 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  ( `' ( z  e. 
{ g  e.  D  |  g  oR 
<_  y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) ) " ( _V  \  {  .0.  }
) )  C_  { y } )
104 snfi 7596 . . . . . 6  |-  { y }  e.  Fin
105 ssfi 7740 . . . . . 6  |-  ( ( { y }  e.  Fin  /\  ( `' ( z  e.  { g  e.  D  |  g  oR  <_  y }  |->  ( ( X `
 z ) ( .r `  R ) ( U `  (
y  oF  -  z ) ) ) ) " ( _V 
\  {  .0.  }
) )  C_  { y } )  ->  ( `' ( z  e. 
{ g  e.  D  |  g  oR 
<_  y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) ) " ( _V  \  {  .0.  }
) )  e.  Fin )
106104, 103, 105sylancr 663 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  ( `' ( z  e. 
{ g  e.  D  |  g  oR 
<_  y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) ) " ( _V  \  {  .0.  }
) )  e.  Fin )
1072, 9, 41, 46, 69, 103, 106gsumresOLD 16728 . . . 4  |-  ( (
ph  /\  y  e.  D )  ->  ( R  gsumg  ( ( z  e. 
{ g  e.  D  |  g  oR 
<_  y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) )  |`  { y } ) )  =  ( R  gsumg  ( z  e.  {
g  e.  D  | 
g  oR  <_ 
y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) ) ) )
1086adantr 465 . . . . . 6  |-  ( (
ph  /\  y  e.  D )  ->  R  e.  Ring )
109 rngmnd 17009 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
110108, 109syl 16 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  R  e.  Mnd )
111 eqid 2467 . . . . . . . . . . 11  |-  y  =  y
112 ofsubeq0 10533 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  y : I --> CC  /\  y : I --> CC )  ->  ( ( y  oF  -  y
)  =  ( I  X.  { 0 } )  <->  y  =  y ) )
11325, 86, 86, 112syl3anc 1228 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  D )  ->  (
( y  oF  -  y )  =  ( I  X.  {
0 } )  <->  y  =  y ) )
114111, 113mpbiri 233 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  D )  ->  (
y  oF  -  y )  =  ( I  X.  { 0 } ) )
115114fveq2d 5870 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  D )  ->  ( U `  ( y  oF  -  y
) )  =  ( U `  ( I  X.  { 0 } ) ) )
116 0nn0 10810 . . . . . . . . . . . . . 14  |-  0  e.  NN0
117116fconst6 5775 . . . . . . . . . . . . 13  |-  ( I  X.  { 0 } ) : I --> NN0
118117a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( I  X.  {
0 } ) : I --> NN0 )
119 0fin 7747 . . . . . . . . . . . . 13  |-  (/)  e.  Fin
120 nn0suppOLD 10850 . . . . . . . . . . . . . . 15  |-  ( ( I  X.  { 0 } ) : I --> NN0  ->  ( `' ( I  X.  { 0 } ) " ( _V  \  { 0 } ) )  =  ( `' ( I  X.  { 0 } )
" NN ) )
121118, 120syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( `' ( I  X.  { 0 } ) " ( _V 
\  { 0 } ) )  =  ( `' ( I  X.  { 0 } )
" NN ) )
122116a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  e.  NN0 )
123 eldifi 3626 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( I  \  (/) )  ->  x  e.  I )
124 fvconst2g 6114 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  NN0  /\  x  e.  I )  ->  ( ( I  X.  { 0 } ) `
 x )  =  0 )
125122, 123, 124syl2an 477 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( I  \  (/) ) )  ->  ( ( I  X.  { 0 } ) `  x )  =  0 )
126118, 125suppssOLD 6014 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( `' ( I  X.  { 0 } ) " ( _V 
\  { 0 } ) )  C_  (/) )
127121, 126eqsstr3d 3539 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `' ( I  X.  { 0 } ) " NN ) 
C_  (/) )
128 ssfi 7740 . . . . . . . . . . . . 13  |-  ( (
(/)  e.  Fin  /\  ( `' ( I  X.  { 0 } )
" NN )  C_  (/) )  ->  ( `' ( I  X.  { 0 } ) " NN )  e.  Fin )
129119, 127, 128sylancr 663 . . . . . . . . . . . 12  |-  ( ph  ->  ( `' ( I  X.  { 0 } ) " NN )  e.  Fin )
1303psrbag 17812 . . . . . . . . . . . . 13  |-  ( I  e.  V  ->  (
( I  X.  {
0 } )  e.  D  <->  ( ( I  X.  { 0 } ) : I --> NN0  /\  ( `' ( I  X.  { 0 } )
" NN )  e. 
Fin ) ) )
1318, 130syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( I  X.  { 0 } )  e.  D  <->  ( (
I  X.  { 0 } ) : I --> NN0  /\  ( `' ( I  X.  {
0 } ) " NN )  e.  Fin ) ) )
132118, 129, 131mpbir2and 920 . . . . . . . . . . 11  |-  ( ph  ->  ( I  X.  {
0 } )  e.  D )
133132adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  D )  ->  (
I  X.  { 0 } )  e.  D
)
134 iftrue 3945 . . . . . . . . . . 11  |-  ( x  =  ( I  X.  { 0 } )  ->  if ( x  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  )  =  .1.  )
135134, 11, 75fvmpt 5950 . . . . . . . . . 10  |-  ( ( I  X.  { 0 } )  e.  D  ->  ( U `  (
I  X.  { 0 } ) )  =  .1.  )
136133, 135syl 16 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  D )  ->  ( U `  ( I  X.  { 0 } ) )  =  .1.  )
137115, 136eqtrd 2508 . . . . . . . 8  |-  ( (
ph  /\  y  e.  D )  ->  ( U `  ( y  oF  -  y
) )  =  .1.  )
138137oveq2d 6300 . . . . . . 7  |-  ( (
ph  /\  y  e.  D )  ->  (
( X `  y
) ( .r `  R ) ( U `
 ( y  oF  -  y ) ) )  =  ( ( X `  y
) ( .r `  R )  .1.  )
)
13917ffvelrnda 6021 . . . . . . . 8  |-  ( (
ph  /\  y  e.  D )  ->  ( X `  y )  e.  ( Base `  R
) )
1402, 20, 10rngridm 17024 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( X `  y )  e.  ( Base `  R
) )  ->  (
( X `  y
) ( .r `  R )  .1.  )  =  ( X `  y ) )
141108, 139, 140syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  y  e.  D )  ->  (
( X `  y
) ( .r `  R )  .1.  )  =  ( X `  y ) )
142138, 141eqtrd 2508 . . . . . 6  |-  ( (
ph  /\  y  e.  D )  ->  (
( X `  y
) ( .r `  R ) ( U `
 ( y  oF  -  y ) ) )  =  ( X `  y ) )
143142, 139eqeltrd 2555 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  (
( X `  y
) ( .r `  R ) ( U `
 ( y  oF  -  y ) ) )  e.  (
Base `  R )
)
144 fveq2 5866 . . . . . . 7  |-  ( z  =  y  ->  ( X `  z )  =  ( X `  y ) )
145 oveq2 6292 . . . . . . . 8  |-  ( z  =  y  ->  (
y  oF  -  z )  =  ( y  oF  -  y ) )
146145fveq2d 5870 . . . . . . 7  |-  ( z  =  y  ->  ( U `  ( y  oF  -  z
) )  =  ( U `  ( y  oF  -  y
) ) )
147144, 146oveq12d 6302 . . . . . 6  |-  ( z  =  y  ->  (
( X `  z
) ( .r `  R ) ( U `
 ( y  oF  -  z ) ) )  =  ( ( X `  y
) ( .r `  R ) ( U `
 ( y  oF  -  y ) ) ) )
1482, 147gsumsn 16784 . . . . 5  |-  ( ( R  e.  Mnd  /\  y  e.  D  /\  ( ( X `  y ) ( .r
`  R ) ( U `  ( y  oF  -  y
) ) )  e.  ( Base `  R
) )  ->  ( R  gsumg  ( z  e.  {
y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) ) )  =  ( ( X `  y ) ( .r
`  R ) ( U `  ( y  oF  -  y
) ) ) )
149110, 23, 143, 148syl3anc 1228 . . . 4  |-  ( (
ph  /\  y  e.  D )  ->  ( R  gsumg  ( z  e.  {
y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) ) )  =  ( ( X `  y ) ( .r
`  R ) ( U `  ( y  oF  -  y
) ) ) )
15038, 107, 1493eqtr3d 2516 . . 3  |-  ( (
ph  /\  y  e.  D )  ->  ( R  gsumg  ( z  e.  {
g  e.  D  | 
g  oR  <_ 
y }  |->  ( ( X `  z ) ( .r `  R
) ( U `  ( y  oF  -  z ) ) ) ) )  =  ( ( X `  y ) ( .r
`  R ) ( U `  ( y  oF  -  y
) ) ) )
15124, 150, 1423eqtrd 2512 . 2  |-  ( (
ph  /\  y  e.  D )  ->  (
( X  .x.  U
) `  y )  =  ( X `  y ) )
15216, 19, 151eqfnfvd 5978 1  |-  ( ph  ->  ( X  .x.  U
)  =  X )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   {crab 2818   _Vcvv 3113    \ cdif 3473    C_ wss 3476   (/)c0 3785   ifcif 3939   {csn 4027   class class class wbr 4447    |-> cmpt 4505    X. cxp 4997   `'ccnv 4998    |` cres 5001   "cima 5002    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6284    oFcof 6522    oRcofr 6523    ^m cmap 7420   Fincfn 7516   CCcc 9490   0cc0 9492    <_ cle 9629    - cmin 9805   NNcn 10536   NN0cn0 10795   Basecbs 14490   .rcmulr 14556   0gc0g 14695    gsumg cgsu 14696   Mndcmnd 15726  CMndccmn 16604   1rcur 16955   Ringcrg 17000   mPwSer cmps 17799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-ofr 6525  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-oi 7935  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-n0 10796  df-z 10865  df-uz 11083  df-fz 11673  df-fzo 11793  df-seq 12076  df-hash 12374  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-plusg 14568  df-mulr 14569  df-sca 14571  df-vsca 14572  df-tset 14574  df-0g 14697  df-gsum 14698  df-mnd 15732  df-grp 15867  df-minusg 15868  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-abl 16607  df-mgp 16944  df-ur 16956  df-rng 17002  df-psr 17804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator