MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrplusgpropd Structured version   Unicode version

Theorem psrplusgpropd 18822
Description: Property deduction for power series addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
psrplusgpropd.b1  |-  ( ph  ->  B  =  ( Base `  R ) )
psrplusgpropd.b2  |-  ( ph  ->  B  =  ( Base `  S ) )
psrplusgpropd.p  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  R ) y )  =  ( x ( +g  `  S ) y ) )
Assertion
Ref Expression
psrplusgpropd  |-  ( ph  ->  ( +g  `  (
I mPwSer  R ) )  =  ( +g  `  (
I mPwSer  S ) ) )
Distinct variable groups:    ph, y, x   
x, B, y    y, R, x    y, S, x
Allowed substitution hints:    I( x, y)

Proof of Theorem psrplusgpropd
Dummy variables  a 
b  d  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1009 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  ph )
2 eqid 2423 . . . . . . . . . . 11  |-  ( I mPwSer  R )  =  ( I mPwSer  R )
3 eqid 2423 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
4 eqid 2423 . . . . . . . . . . 11  |-  { c  e.  ( NN0  ^m  I )  |  ( `' c " NN )  e.  Fin }  =  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin }
5 eqid 2423 . . . . . . . . . . 11  |-  ( Base `  ( I mPwSer  R ) )  =  ( Base `  ( I mPwSer  R ) )
6 simp2 1007 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  a  e.  (
Base `  ( I mPwSer  R ) ) )
72, 3, 4, 5, 6psrelbas 18596 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  a : {
c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin } --> ( Base `  R
) )
87ffvelrnda 6035 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
a `  d )  e.  ( Base `  R
) )
9 psrplusgpropd.b1 . . . . . . . . . 10  |-  ( ph  ->  B  =  ( Base `  R ) )
101, 9syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  B  =  ( Base `  R
) )
118, 10eleqtrrd 2514 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
a `  d )  e.  B )
12 simp3 1008 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  b  e.  (
Base `  ( I mPwSer  R ) ) )
132, 3, 4, 5, 12psrelbas 18596 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  b : {
c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin } --> ( Base `  R
) )
1413ffvelrnda 6035 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
b `  d )  e.  ( Base `  R
) )
1514, 10eleqtrrd 2514 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
b `  d )  e.  B )
16 psrplusgpropd.p . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  R ) y )  =  ( x ( +g  `  S ) y ) )
1716oveqrspc2v 6326 . . . . . . . 8  |-  ( (
ph  /\  ( (
a `  d )  e.  B  /\  (
b `  d )  e.  B ) )  -> 
( ( a `  d ) ( +g  `  R ) ( b `
 d ) )  =  ( ( a `
 d ) ( +g  `  S ) ( b `  d
) ) )
181, 11, 15, 17syl12anc 1263 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
( a `  d
) ( +g  `  R
) ( b `  d ) )  =  ( ( a `  d ) ( +g  `  S ) ( b `
 d ) ) )
1918mpteq2dva 4508 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  ( d  e. 
{ c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin }  |->  ( ( a `  d ) ( +g  `  R
) ( b `  d ) ) )  =  ( d  e. 
{ c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin }  |->  ( ( a `  d ) ( +g  `  S
) ( b `  d ) ) ) )
20 ffn 5744 . . . . . . . 8  |-  ( a : { c  e.  ( NN0  ^m  I
)  |  ( `' c " NN )  e.  Fin } --> ( Base `  R )  ->  a  Fn  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )
217, 20syl 17 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  a  Fn  {
c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin } )
22 ffn 5744 . . . . . . . 8  |-  ( b : { c  e.  ( NN0  ^m  I
)  |  ( `' c " NN )  e.  Fin } --> ( Base `  R )  ->  b  Fn  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )
2313, 22syl 17 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  b  Fn  {
c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin } )
24 ovex 6331 . . . . . . . . 9  |-  ( NN0 
^m  I )  e. 
_V
2524rabex 4573 . . . . . . . 8  |-  { c  e.  ( NN0  ^m  I )  |  ( `' c " NN )  e.  Fin }  e.  _V
2625a1i 11 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  { c  e.  ( NN0  ^m  I
)  |  ( `' c " NN )  e.  Fin }  e.  _V )
27 inidm 3672 . . . . . . 7  |-  ( { c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin }  i^i  { c  e.  ( NN0  ^m  I
)  |  ( `' c " NN )  e.  Fin } )  =  { c  e.  ( NN0  ^m  I
)  |  ( `' c " NN )  e.  Fin }
28 eqidd 2424 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
a `  d )  =  ( a `  d ) )
29 eqidd 2424 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
b `  d )  =  ( b `  d ) )
3021, 23, 26, 26, 27, 28, 29offval 6550 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  ( a  oF ( +g  `  R
) b )  =  ( d  e.  {
c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin } 
|->  ( ( a `  d ) ( +g  `  R ) ( b `
 d ) ) ) )
3121, 23, 26, 26, 27, 28, 29offval 6550 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  ( a  oF ( +g  `  S
) b )  =  ( d  e.  {
c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin } 
|->  ( ( a `  d ) ( +g  `  S ) ( b `
 d ) ) ) )
3219, 30, 313eqtr4d 2474 . . . . 5  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  ( a  oF ( +g  `  R
) b )  =  ( a  oF ( +g  `  S
) b ) )
3332mpt2eq3dva 6367 . . . 4  |-  ( ph  ->  ( a  e.  (
Base `  ( I mPwSer  R ) ) ,  b  e.  ( Base `  (
I mPwSer  R ) )  |->  ( a  oF ( +g  `  R ) b ) )  =  ( a  e.  (
Base `  ( I mPwSer  R ) ) ,  b  e.  ( Base `  (
I mPwSer  R ) )  |->  ( a  oF ( +g  `  S ) b ) ) )
34 psrplusgpropd.b2 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  S ) )
359, 34eqtr3d 2466 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  S ) )
3635psrbaspropd 18821 . . . . 5  |-  ( ph  ->  ( Base `  (
I mPwSer  R ) )  =  ( Base `  (
I mPwSer  S ) ) )
37 mpt2eq12 6363 . . . . 5  |-  ( ( ( Base `  (
I mPwSer  R ) )  =  ( Base `  (
I mPwSer  S ) )  /\  ( Base `  ( I mPwSer  R ) )  =  (
Base `  ( I mPwSer  S ) ) )  -> 
( a  e.  (
Base `  ( I mPwSer  R ) ) ,  b  e.  ( Base `  (
I mPwSer  R ) )  |->  ( a  oF ( +g  `  S ) b ) )  =  ( a  e.  (
Base `  ( I mPwSer  S ) ) ,  b  e.  ( Base `  (
I mPwSer  S ) )  |->  ( a  oF ( +g  `  S ) b ) ) )
3836, 36, 37syl2anc 666 . . . 4  |-  ( ph  ->  ( a  e.  (
Base `  ( I mPwSer  R ) ) ,  b  e.  ( Base `  (
I mPwSer  R ) )  |->  ( a  oF ( +g  `  S ) b ) )  =  ( a  e.  (
Base `  ( I mPwSer  S ) ) ,  b  e.  ( Base `  (
I mPwSer  S ) )  |->  ( a  oF ( +g  `  S ) b ) ) )
3933, 38eqtrd 2464 . . 3  |-  ( ph  ->  ( a  e.  (
Base `  ( I mPwSer  R ) ) ,  b  e.  ( Base `  (
I mPwSer  R ) )  |->  ( a  oF ( +g  `  R ) b ) )  =  ( a  e.  (
Base `  ( I mPwSer  S ) ) ,  b  e.  ( Base `  (
I mPwSer  S ) )  |->  ( a  oF ( +g  `  S ) b ) ) )
40 ofmres 6801 . . 3  |-  (  oF ( +g  `  R
)  |`  ( ( Base `  ( I mPwSer  R ) )  X.  ( Base `  ( I mPwSer  R ) ) ) )  =  ( a  e.  (
Base `  ( I mPwSer  R ) ) ,  b  e.  ( Base `  (
I mPwSer  R ) )  |->  ( a  oF ( +g  `  R ) b ) )
41 ofmres 6801 . . 3  |-  (  oF ( +g  `  S
)  |`  ( ( Base `  ( I mPwSer  S ) )  X.  ( Base `  ( I mPwSer  S ) ) ) )  =  ( a  e.  (
Base `  ( I mPwSer  S ) ) ,  b  e.  ( Base `  (
I mPwSer  S ) )  |->  ( a  oF ( +g  `  S ) b ) )
4239, 40, 413eqtr4g 2489 . 2  |-  ( ph  ->  (  oF ( +g  `  R )  |`  ( ( Base `  (
I mPwSer  R ) )  X.  ( Base `  (
I mPwSer  R ) ) ) )  =  (  oF ( +g  `  S
)  |`  ( ( Base `  ( I mPwSer  S ) )  X.  ( Base `  ( I mPwSer  S ) ) ) ) )
43 eqid 2423 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
44 eqid 2423 . . 3  |-  ( +g  `  ( I mPwSer  R ) )  =  ( +g  `  ( I mPwSer  R ) )
452, 5, 43, 44psrplusg 18598 . 2  |-  ( +g  `  ( I mPwSer  R ) )  =  (  oF ( +g  `  R
)  |`  ( ( Base `  ( I mPwSer  R ) )  X.  ( Base `  ( I mPwSer  R ) ) ) )
46 eqid 2423 . . 3  |-  ( I mPwSer  S )  =  ( I mPwSer  S )
47 eqid 2423 . . 3  |-  ( Base `  ( I mPwSer  S ) )  =  ( Base `  ( I mPwSer  S ) )
48 eqid 2423 . . 3  |-  ( +g  `  S )  =  ( +g  `  S )
49 eqid 2423 . . 3  |-  ( +g  `  ( I mPwSer  S ) )  =  ( +g  `  ( I mPwSer  S ) )
5046, 47, 48, 49psrplusg 18598 . 2  |-  ( +g  `  ( I mPwSer  S ) )  =  (  oF ( +g  `  S
)  |`  ( ( Base `  ( I mPwSer  S ) )  X.  ( Base `  ( I mPwSer  S ) ) ) )
5142, 45, 503eqtr4g 2489 1  |-  ( ph  ->  ( +g  `  (
I mPwSer  R ) )  =  ( +g  `  (
I mPwSer  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869   {crab 2780   _Vcvv 3082    |-> cmpt 4480    X. cxp 4849   `'ccnv 4850    |` cres 4853   "cima 4854    Fn wfn 5594   -->wf 5595   ` cfv 5599  (class class class)co 6303    |-> cmpt2 6305    oFcof 6541    ^m cmap 7478   Fincfn 7575   NNcn 10611   NN0cn0 10871   Basecbs 15114   +g cplusg 15183   mPwSer cmps 18568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-of 6543  df-om 6705  df-1st 6805  df-2nd 6806  df-supp 6924  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-oadd 7192  df-er 7369  df-map 7480  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-fsupp 7888  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-nn 10612  df-2 10670  df-3 10671  df-4 10672  df-5 10673  df-6 10674  df-7 10675  df-8 10676  df-9 10677  df-n0 10872  df-z 10940  df-uz 11162  df-fz 11787  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-plusg 15196  df-mulr 15197  df-sca 15199  df-vsca 15200  df-tset 15202  df-psr 18573
This theorem is referenced by:  ply1plusgpropd  18830
  Copyright terms: Public domain W3C validator