MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrplusgpropd Unicode version

Theorem psrplusgpropd 16584
Description: Property deduction for power series addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
psrplusgpropd.b1  |-  ( ph  ->  B  =  ( Base `  R ) )
psrplusgpropd.b2  |-  ( ph  ->  B  =  ( Base `  S ) )
psrplusgpropd.p  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  R ) y )  =  ( x ( +g  `  S ) y ) )
Assertion
Ref Expression
psrplusgpropd  |-  ( ph  ->  ( +g  `  (
I mPwSer  R ) )  =  ( +g  `  (
I mPwSer  S ) ) )
Distinct variable groups:    ph, y, x   
x, B, y    y, R, x    y, S, x
Allowed substitution hints:    I( x, y)

Proof of Theorem psrplusgpropd
Dummy variables  a 
b  d  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 960 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  ph )
2 eqid 2404 . . . . . . . . . . 11  |-  ( I mPwSer  R )  =  ( I mPwSer  R )
3 eqid 2404 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
4 eqid 2404 . . . . . . . . . . 11  |-  { c  e.  ( NN0  ^m  I )  |  ( `' c " NN )  e.  Fin }  =  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin }
5 eqid 2404 . . . . . . . . . . 11  |-  ( Base `  ( I mPwSer  R ) )  =  ( Base `  ( I mPwSer  R ) )
6 simp2 958 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  a  e.  (
Base `  ( I mPwSer  R ) ) )
72, 3, 4, 5, 6psrelbas 16399 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  a : {
c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin } --> ( Base `  R
) )
87ffvelrnda 5829 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
a `  d )  e.  ( Base `  R
) )
9 psrplusgpropd.b1 . . . . . . . . . 10  |-  ( ph  ->  B  =  ( Base `  R ) )
101, 9syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  B  =  ( Base `  R
) )
118, 10eleqtrrd 2481 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
a `  d )  e.  B )
12 simp3 959 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  b  e.  (
Base `  ( I mPwSer  R ) ) )
132, 3, 4, 5, 12psrelbas 16399 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  b : {
c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin } --> ( Base `  R
) )
1413ffvelrnda 5829 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
b `  d )  e.  ( Base `  R
) )
1514, 10eleqtrrd 2481 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
b `  d )  e.  B )
16 psrplusgpropd.p . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  R ) y )  =  ( x ( +g  `  S ) y ) )
1716proplem 13870 . . . . . . . 8  |-  ( (
ph  /\  ( (
a `  d )  e.  B  /\  (
b `  d )  e.  B ) )  -> 
( ( a `  d ) ( +g  `  R ) ( b `
 d ) )  =  ( ( a `
 d ) ( +g  `  S ) ( b `  d
) ) )
181, 11, 15, 17syl12anc 1182 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
( a `  d
) ( +g  `  R
) ( b `  d ) )  =  ( ( a `  d ) ( +g  `  S ) ( b `
 d ) ) )
1918mpteq2dva 4255 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  ( d  e. 
{ c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin }  |->  ( ( a `  d ) ( +g  `  R
) ( b `  d ) ) )  =  ( d  e. 
{ c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin }  |->  ( ( a `  d ) ( +g  `  S
) ( b `  d ) ) ) )
20 ffn 5550 . . . . . . . 8  |-  ( a : { c  e.  ( NN0  ^m  I
)  |  ( `' c " NN )  e.  Fin } --> ( Base `  R )  ->  a  Fn  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )
217, 20syl 16 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  a  Fn  {
c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin } )
22 ffn 5550 . . . . . . . 8  |-  ( b : { c  e.  ( NN0  ^m  I
)  |  ( `' c " NN )  e.  Fin } --> ( Base `  R )  ->  b  Fn  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )
2313, 22syl 16 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  b  Fn  {
c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin } )
24 ovex 6065 . . . . . . . . 9  |-  ( NN0 
^m  I )  e. 
_V
2524rabex 4314 . . . . . . . 8  |-  { c  e.  ( NN0  ^m  I )  |  ( `' c " NN )  e.  Fin }  e.  _V
2625a1i 11 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  { c  e.  ( NN0  ^m  I
)  |  ( `' c " NN )  e.  Fin }  e.  _V )
27 inidm 3510 . . . . . . 7  |-  ( { c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin }  i^i  { c  e.  ( NN0  ^m  I
)  |  ( `' c " NN )  e.  Fin } )  =  { c  e.  ( NN0  ^m  I
)  |  ( `' c " NN )  e.  Fin }
28 eqidd 2405 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
a `  d )  =  ( a `  d ) )
29 eqidd 2405 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( Base `  (
I mPwSer  R ) )  /\  b  e.  ( Base `  ( I mPwSer  R ) ) )  /\  d  e.  { c  e.  ( NN0  ^m  I )  |  ( `' c
" NN )  e. 
Fin } )  ->  (
b `  d )  =  ( b `  d ) )
3021, 23, 26, 26, 27, 28, 29offval 6271 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  ( a  o F ( +g  `  R
) b )  =  ( d  e.  {
c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin } 
|->  ( ( a `  d ) ( +g  `  R ) ( b `
 d ) ) ) )
3121, 23, 26, 26, 27, 28, 29offval 6271 . . . . . 6  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  ( a  o F ( +g  `  S
) b )  =  ( d  e.  {
c  e.  ( NN0 
^m  I )  |  ( `' c " NN )  e.  Fin } 
|->  ( ( a `  d ) ( +g  `  S ) ( b `
 d ) ) ) )
3219, 30, 313eqtr4d 2446 . . . . 5  |-  ( (
ph  /\  a  e.  ( Base `  ( I mPwSer  R ) )  /\  b  e.  ( Base `  (
I mPwSer  R ) ) )  ->  ( a  o F ( +g  `  R
) b )  =  ( a  o F ( +g  `  S
) b ) )
3332mpt2eq3dva 6097 . . . 4  |-  ( ph  ->  ( a  e.  (
Base `  ( I mPwSer  R ) ) ,  b  e.  ( Base `  (
I mPwSer  R ) )  |->  ( a  o F ( +g  `  R ) b ) )  =  ( a  e.  (
Base `  ( I mPwSer  R ) ) ,  b  e.  ( Base `  (
I mPwSer  R ) )  |->  ( a  o F ( +g  `  S ) b ) ) )
34 psrplusgpropd.b2 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  S ) )
359, 34eqtr3d 2438 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  S ) )
3635psrbaspropd 16583 . . . . 5  |-  ( ph  ->  ( Base `  (
I mPwSer  R ) )  =  ( Base `  (
I mPwSer  S ) ) )
37 mpt2eq12 6093 . . . . 5  |-  ( ( ( Base `  (
I mPwSer  R ) )  =  ( Base `  (
I mPwSer  S ) )  /\  ( Base `  ( I mPwSer  R ) )  =  (
Base `  ( I mPwSer  S ) ) )  -> 
( a  e.  (
Base `  ( I mPwSer  R ) ) ,  b  e.  ( Base `  (
I mPwSer  R ) )  |->  ( a  o F ( +g  `  S ) b ) )  =  ( a  e.  (
Base `  ( I mPwSer  S ) ) ,  b  e.  ( Base `  (
I mPwSer  S ) )  |->  ( a  o F ( +g  `  S ) b ) ) )
3836, 36, 37syl2anc 643 . . . 4  |-  ( ph  ->  ( a  e.  (
Base `  ( I mPwSer  R ) ) ,  b  e.  ( Base `  (
I mPwSer  R ) )  |->  ( a  o F ( +g  `  S ) b ) )  =  ( a  e.  (
Base `  ( I mPwSer  S ) ) ,  b  e.  ( Base `  (
I mPwSer  S ) )  |->  ( a  o F ( +g  `  S ) b ) ) )
3933, 38eqtrd 2436 . . 3  |-  ( ph  ->  ( a  e.  (
Base `  ( I mPwSer  R ) ) ,  b  e.  ( Base `  (
I mPwSer  R ) )  |->  ( a  o F ( +g  `  R ) b ) )  =  ( a  e.  (
Base `  ( I mPwSer  S ) ) ,  b  e.  ( Base `  (
I mPwSer  S ) )  |->  ( a  o F ( +g  `  S ) b ) ) )
40 ofmres 6302 . . 3  |-  (  o F ( +g  `  R
)  |`  ( ( Base `  ( I mPwSer  R ) )  X.  ( Base `  ( I mPwSer  R ) ) ) )  =  ( a  e.  (
Base `  ( I mPwSer  R ) ) ,  b  e.  ( Base `  (
I mPwSer  R ) )  |->  ( a  o F ( +g  `  R ) b ) )
41 ofmres 6302 . . 3  |-  (  o F ( +g  `  S
)  |`  ( ( Base `  ( I mPwSer  S ) )  X.  ( Base `  ( I mPwSer  S ) ) ) )  =  ( a  e.  (
Base `  ( I mPwSer  S ) ) ,  b  e.  ( Base `  (
I mPwSer  S ) )  |->  ( a  o F ( +g  `  S ) b ) )
4239, 40, 413eqtr4g 2461 . 2  |-  ( ph  ->  (  o F ( +g  `  R )  |`  ( ( Base `  (
I mPwSer  R ) )  X.  ( Base `  (
I mPwSer  R ) ) ) )  =  (  o F ( +g  `  S
)  |`  ( ( Base `  ( I mPwSer  S ) )  X.  ( Base `  ( I mPwSer  S ) ) ) ) )
43 eqid 2404 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
44 eqid 2404 . . 3  |-  ( +g  `  ( I mPwSer  R ) )  =  ( +g  `  ( I mPwSer  R ) )
452, 5, 43, 44psrplusg 16400 . 2  |-  ( +g  `  ( I mPwSer  R ) )  =  (  o F ( +g  `  R
)  |`  ( ( Base `  ( I mPwSer  R ) )  X.  ( Base `  ( I mPwSer  R ) ) ) )
46 eqid 2404 . . 3  |-  ( I mPwSer  S )  =  ( I mPwSer  S )
47 eqid 2404 . . 3  |-  ( Base `  ( I mPwSer  S ) )  =  ( Base `  ( I mPwSer  S ) )
48 eqid 2404 . . 3  |-  ( +g  `  S )  =  ( +g  `  S )
49 eqid 2404 . . 3  |-  ( +g  `  ( I mPwSer  S ) )  =  ( +g  `  ( I mPwSer  S ) )
5046, 47, 48, 49psrplusg 16400 . 2  |-  ( +g  `  ( I mPwSer  S ) )  =  (  o F ( +g  `  S
)  |`  ( ( Base `  ( I mPwSer  S ) )  X.  ( Base `  ( I mPwSer  S ) ) ) )
5142, 45, 503eqtr4g 2461 1  |-  ( ph  ->  ( +g  `  (
I mPwSer  R ) )  =  ( +g  `  (
I mPwSer  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   {crab 2670   _Vcvv 2916    e. cmpt 4226    X. cxp 4835   `'ccnv 4836    |` cres 4839   "cima 4840    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042    o Fcof 6262    ^m cmap 6977   Fincfn 7068   NNcn 9956   NN0cn0 10177   Basecbs 13424   +g cplusg 13484   mPwSer cmps 16361
This theorem is referenced by:  ply1plusgpropd  16593
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-tset 13503  df-psr 16372
  Copyright terms: Public domain W3C validator