MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrplusg Structured version   Unicode version

Theorem psrplusg 18229
Description: The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
psrplusg.s  |-  S  =  ( I mPwSer  R )
psrplusg.b  |-  B  =  ( Base `  S
)
psrplusg.a  |-  .+  =  ( +g  `  R )
psrplusg.p  |-  .+b  =  ( +g  `  S )
Assertion
Ref Expression
psrplusg  |-  .+b  =  (  oF  .+  |`  ( B  X.  B ) )

Proof of Theorem psrplusg
Dummy variables  f 
g  k  x  h  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrplusg.s . . . . 5  |-  S  =  ( I mPwSer  R )
2 eqid 2454 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
3 psrplusg.a . . . . 5  |-  .+  =  ( +g  `  R )
4 eqid 2454 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2454 . . . . 5  |-  ( TopOpen `  R )  =  (
TopOpen `  R )
6 eqid 2454 . . . . 5  |-  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
7 psrplusg.b . . . . . 6  |-  B  =  ( Base `  S
)
8 simpl 455 . . . . . 6  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  I  e.  _V )
91, 2, 6, 7, 8psrbas 18225 . . . . 5  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  B  =  ( (
Base `  R )  ^m  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } ) )
10 eqid 2454 . . . . 5  |-  (  oF  .+  |`  ( B  X.  B ) )  =  (  oF  .+  |`  ( B  X.  B ) )
11 eqid 2454 . . . . 5  |-  ( f  e.  B ,  g  e.  B  |->  ( k  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  oF  -  x ) ) ) ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( k  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  oF  -  x ) ) ) ) ) ) )
12 eqid 2454 . . . . 5  |-  ( x  e.  ( Base `  R
) ,  f  e.  B  |->  ( ( { h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { x }
)  oF ( .r `  R ) f ) )  =  ( x  e.  (
Base `  R ) ,  f  e.  B  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  oF ( .r
`  R ) f ) )
13 eqidd 2455 . . . . 5  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  ( Xt_ `  ( { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) )  =  ( Xt_ `  ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R
) } ) ) )
14 simpr 459 . . . . 5  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  R  e.  _V )
151, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 8, 14psrval 18206 . . . 4  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  S  =  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  (  oF  .+  |`  ( B  X.  B ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( k  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  B  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  oF ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } ) )
1615fveq2d 5852 . . 3  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  ( +g  `  S
)  =  ( +g  `  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  (  oF  .+  |`  ( B  X.  B
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( k  e. 
{ h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } 
|->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  B  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  oF ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } ) ) )
17 psrplusg.p . . 3  |-  .+b  =  ( +g  `  S )
18 fvex 5858 . . . . . 6  |-  ( Base `  S )  e.  _V
197, 18eqeltri 2538 . . . . 5  |-  B  e. 
_V
2019, 19xpex 6577 . . . 4  |-  ( B  X.  B )  e. 
_V
21 ofexg 6517 . . . 4  |-  ( ( B  X.  B )  e.  _V  ->  (  oF  .+  |`  ( B  X.  B ) )  e.  _V )
22 psrvalstr 18207 . . . . 5  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  (  oF  .+  |`  ( B  X.  B ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( k  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  B  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  oF ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } ) Struct  <. 1 ,  9 >.
23 plusgid 14819 . . . . 5  |-  +g  = Slot  ( +g  `  ndx )
24 snsstp2 4168 . . . . . 6  |-  { <. ( +g  `  ndx ) ,  (  oF  .+  |`  ( B  X.  B ) ) >. }  C_  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  (  oF  .+  |`  ( B  X.  B
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( k  e. 
{ h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } 
|->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  oF  -  x ) ) ) ) ) ) ) >. }
25 ssun1 3653 . . . . . 6  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  (  oF  .+  |`  ( B  X.  B
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( k  e. 
{ h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } 
|->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  C_  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  (  oF  .+  |`  ( B  X.  B ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( k  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  B  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  oF ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } )
2624, 25sstri 3498 . . . . 5  |-  { <. ( +g  `  ndx ) ,  (  oF  .+  |`  ( B  X.  B ) ) >. }  C_  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  (  oF  .+  |`  ( B  X.  B
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( k  e. 
{ h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } 
|->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  B  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  oF ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } )
2722, 23, 26strfv 14752 . . . 4  |-  ( (  oF  .+  |`  ( B  X.  B ) )  e.  _V  ->  (  oF  .+  |`  ( B  X.  B ) )  =  ( +g  `  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  (  oF  .+  |`  ( B  X.  B ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( k  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  B  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  oF ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } ) ) )
2820, 21, 27mp2b 10 . . 3  |-  (  oF  .+  |`  ( B  X.  B ) )  =  ( +g  `  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  (  oF  .+  |`  ( B  X.  B ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( k  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  R
) ( g `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  B  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  oF ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } ) )
2916, 17, 283eqtr4g 2520 . 2  |-  ( ( I  e.  _V  /\  R  e.  _V )  -> 
.+b  =  (  oF  .+  |`  ( B  X.  B ) ) )
30 reldmpsr 18205 . . . . . . 7  |-  Rel  dom mPwSer
3130ovprc 6300 . . . . . 6  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I mPwSer  R )  =  (/) )
321, 31syl5eq 2507 . . . . 5  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  S  =  (/) )
3332fveq2d 5852 . . . 4  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( +g  `  S
)  =  ( +g  `  (/) ) )
3423str0 14756 . . . 4  |-  (/)  =  ( +g  `  (/) )
3533, 17, 343eqtr4g 2520 . . 3  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  -> 
.+b  =  (/) )
3632fveq2d 5852 . . . . . . . 8  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( Base `  S
)  =  ( Base `  (/) ) )
37 base0 14757 . . . . . . . 8  |-  (/)  =  (
Base `  (/) )
3836, 7, 373eqtr4g 2520 . . . . . . 7  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  B  =  (/) )
3938xpeq2d 5012 . . . . . 6  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( B  X.  B
)  =  ( B  X.  (/) ) )
40 xp0 5410 . . . . . 6  |-  ( B  X.  (/) )  =  (/)
4139, 40syl6eq 2511 . . . . 5  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( B  X.  B
)  =  (/) )
4241reseq2d 5262 . . . 4  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  (  oF  .+  |`  ( B  X.  B
) )  =  (  oF  .+  |`  (/) ) )
43 res0 5266 . . . 4  |-  (  oF  .+  |`  (/) )  =  (/)
4442, 43syl6eq 2511 . . 3  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  (  oF  .+  |`  ( B  X.  B
) )  =  (/) )
4535, 44eqtr4d 2498 . 2  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  -> 
.+b  =  (  oF  .+  |`  ( B  X.  B ) ) )
4629, 45pm2.61i 164 1  |-  .+b  =  (  oF  .+  |`  ( B  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 367    = wceq 1398    e. wcel 1823   {crab 2808   _Vcvv 3106    u. cun 3459   (/)c0 3783   {csn 4016   {ctp 4020   <.cop 4022   class class class wbr 4439    |-> cmpt 4497    X. cxp 4986   `'ccnv 4987    |` cres 4990   "cima 4991   ` cfv 5570  (class class class)co 6270    |-> cmpt2 6272    oFcof 6511    oRcofr 6512    ^m cmap 7412   Fincfn 7509   1c1 9482    <_ cle 9618    - cmin 9796   NNcn 10531   9c9 10588   NN0cn0 10791   ndxcnx 14713   Basecbs 14716   +g cplusg 14784   .rcmulr 14785  Scalarcsca 14787   .scvsca 14788  TopSetcts 14790   TopOpenctopn 14911   Xt_cpt 14928    gsumg cgsu 14930   mPwSer cmps 18195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-plusg 14797  df-mulr 14798  df-sca 14800  df-vsca 14801  df-tset 14803  df-psr 18200
This theorem is referenced by:  psradd  18230  psrmulr  18232  psrsca  18237  psrvscafval  18238  psrplusgpropd  18472  ply1plusgfvi  18478
  Copyright terms: Public domain W3C validator