MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psropprmul Structured version   Unicode version

Theorem psropprmul 18043
Description: Reversing multiplication in a ring reverses multiplication in the power series ring. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
psropprmul.y  |-  Y  =  ( I mPwSer  R )
psropprmul.s  |-  S  =  (oppr
`  R )
psropprmul.z  |-  Z  =  ( I mPwSer  S )
psropprmul.t  |-  .x.  =  ( .r `  Y )
psropprmul.u  |-  .xb  =  ( .r `  Z )
psropprmul.b  |-  B  =  ( Base `  Y
)
Assertion
Ref Expression
psropprmul  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .xb  G )  =  ( G  .x.  F
) )

Proof of Theorem psropprmul
Dummy variables  b 
c  e  f  a  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2460 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
2 eqid 2460 . . . . 5  |-  ( 0g
`  R )  =  ( 0g `  R
)
3 rngcmn 17009 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. CMnd
)
433ad2ant1 1012 . . . . . 6  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  R  e. CMnd )
54adantr 465 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  R  e. CMnd )
6 ovex 6300 . . . . . . . 8  |-  ( NN0 
^m  I )  e. 
_V
76rabex 4591 . . . . . . 7  |-  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  e.  _V
87rabex 4591 . . . . . 6  |-  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  e.  _V
98a1i 11 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b }  e.  _V )
10 simpll1 1030 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  ->  R  e.  Ring )
11 psropprmul.y . . . . . . . . . 10  |-  Y  =  ( I mPwSer  R )
12 eqid 2460 . . . . . . . . . 10  |-  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  =  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }
13 psropprmul.b . . . . . . . . . 10  |-  B  =  ( Base `  Y
)
14 simp3 993 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  G  e.  B )
1511, 1, 12, 13, 14psrelbas 17796 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  G : { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } --> ( Base `  R
) )
1615adantr 465 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  G : {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } --> ( Base `  R
) )
17 elrabi 3251 . . . . . . . 8  |-  ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b }  ->  e  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
18 ffvelrn 6010 . . . . . . . 8  |-  ( ( G : { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } --> ( Base `  R )  /\  e  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } )  ->  ( G `  e )  e.  ( Base `  R
) )
1916, 17, 18syl2an 477 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  ->  ( G `  e )  e.  (
Base `  R )
)
20 simp2 992 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  F  e.  B )
2111, 1, 12, 13, 20psrelbas 17796 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  F : { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } --> ( Base `  R
) )
2221ad2antrr 725 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  ->  F : {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } --> ( Base `  R
) )
23 ssrab2 3578 . . . . . . . . 9  |-  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  C_  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }
24 reldmpsr 17774 . . . . . . . . . . . . 13  |-  Rel  dom mPwSer
2511, 13, 24strov2rcl 14528 . . . . . . . . . . . 12  |-  ( G  e.  B  ->  I  e.  _V )
26253ad2ant3 1014 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  I  e.  _V )
2726ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  ->  I  e.  _V )
28 simplr 754 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  ->  b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
29 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  ->  e  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b } )
30 eqid 2460 . . . . . . . . . . 11  |-  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  =  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }
3112, 30psrbagconcl 17789 . . . . . . . . . 10  |-  ( ( I  e.  _V  /\  b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  /\  e  e.  { d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b } )  ->  ( b  oF  -  e
)  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b } )
3227, 28, 29, 31syl3anc 1223 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  ->  ( b  oF  -  e )  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b } )
3323, 32sseldi 3495 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  ->  ( b  oF  -  e )  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin } )
3422, 33ffvelrnd 6013 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  ->  ( F `  ( b  oF  -  e ) )  e.  ( Base `  R
) )
35 eqid 2460 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
361, 35rngcl 16992 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( G `  e )  e.  ( Base `  R
)  /\  ( F `  ( b  oF  -  e ) )  e.  ( Base `  R
) )  ->  (
( G `  e
) ( .r `  R ) ( F `
 ( b  oF  -  e ) ) )  e.  (
Base `  R )
)
3710, 19, 34, 36syl3anc 1223 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  ->  ( ( G `
 e ) ( .r `  R ) ( F `  (
b  oF  -  e ) ) )  e.  ( Base `  R
) )
38 eqid 2460 . . . . . 6  |-  ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b } 
|->  ( ( G `  e ) ( .r
`  R ) ( F `  ( b  oF  -  e
) ) ) )  =  ( e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b }  |->  ( ( G `  e
) ( .r `  R ) ( F `
 ( b  oF  -  e ) ) ) )
3937, 38fmptd 6036 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b }  |->  ( ( G `  e
) ( .r `  R ) ( F `
 ( b  oF  -  e ) ) ) ) : { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } --> ( Base `  R ) )
40 mptexg 6121 . . . . . . 7  |-  ( { d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  e.  _V  ->  ( e  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  oF  -  e ) ) ) )  e.  _V )
418, 40mp1i 12 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b }  |->  ( ( G `  e
) ( .r `  R ) ( F `
 ( b  oF  -  e ) ) ) )  e. 
_V )
42 funmpt 5615 . . . . . . 7  |-  Fun  (
e  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  oF  -  e ) ) ) )
4342a1i 11 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  Fun  ( e  e.  { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b }  |->  ( ( G `  e
) ( .r `  R ) ( F `
 ( b  oF  -  e ) ) ) ) )
44 fvex 5867 . . . . . . 7  |-  ( 0g
`  R )  e. 
_V
4544a1i 11 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( 0g `  R )  e.  _V )
4612psrbaglefi 17787 . . . . . . 7  |-  ( ( I  e.  _V  /\  b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin } )  ->  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b }  e.  Fin )
4726, 46sylan 471 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b }  e.  Fin )
48 suppssdm 6904 . . . . . . . 8  |-  ( ( e  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  oF  -  e ) ) ) ) supp  ( 0g
`  R ) ) 
C_  dom  ( e  e.  { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b }  |->  ( ( G `  e
) ( .r `  R ) ( F `
 ( b  oF  -  e ) ) ) )
4938dmmptss 5494 . . . . . . . 8  |-  dom  (
e  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  oF  -  e ) ) ) )  C_  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }
5048, 49sstri 3506 . . . . . . 7  |-  ( ( e  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  oF  -  e ) ) ) ) supp  ( 0g
`  R ) ) 
C_  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b }
5150a1i 11 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b } 
|->  ( ( G `  e ) ( .r
`  R ) ( F `  ( b  oF  -  e
) ) ) ) supp  ( 0g `  R
) )  C_  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b } )
52 suppssfifsupp 7833 . . . . . 6  |-  ( ( ( ( e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b }  |->  ( ( G `  e
) ( .r `  R ) ( F `
 ( b  oF  -  e ) ) ) )  e. 
_V  /\  Fun  ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b } 
|->  ( ( G `  e ) ( .r
`  R ) ( F `  ( b  oF  -  e
) ) ) )  /\  ( 0g `  R )  e.  _V )  /\  ( { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  e.  Fin  /\  ( ( e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b }  |->  ( ( G `  e
) ( .r `  R ) ( F `
 ( b  oF  -  e ) ) ) ) supp  ( 0g `  R ) ) 
C_  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b } ) )  ->  (
e  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  oF  -  e ) ) ) ) finSupp  ( 0g
`  R ) )
5341, 43, 45, 47, 51, 52syl32anc 1231 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b }  |->  ( ( G `  e
) ( .r `  R ) ( F `
 ( b  oF  -  e ) ) ) ) finSupp  ( 0g `  R ) )
5412, 30psrbagconf1o 17790 . . . . . 6  |-  ( ( I  e.  _V  /\  b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin } )  ->  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b }  |->  ( b  oF  -  c ) ) : { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } -1-1-onto-> { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )
5526, 54sylan 471 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b }  |->  ( b  oF  -  c ) ) : { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } -1-1-onto-> { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )
561, 2, 5, 9, 39, 53, 55gsumf1o 16708 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( R  gsumg  ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b } 
|->  ( ( G `  e ) ( .r
`  R ) ( F `  ( b  oF  -  e
) ) ) ) )  =  ( R 
gsumg  ( ( e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b }  |->  ( ( G `  e
) ( .r `  R ) ( F `
 ( b  oF  -  e ) ) ) )  o.  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( b  oF  -  c
) ) ) ) )
5726ad2antrr 725 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  ->  I  e.  _V )
58 simplr 754 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  ->  b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
59 simpr 461 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  ->  c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b } )
6012, 30psrbagconcl 17789 . . . . . . . 8  |-  ( ( I  e.  _V  /\  b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  /\  c  e.  { d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b } )  ->  ( b  oF  -  c
)  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b } )
6157, 58, 59, 60syl3anc 1223 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  ->  ( b  oF  -  c )  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b } )
62 eqidd 2461 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b }  |->  ( b  oF  -  c ) )  =  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( b  oF  -  c
) ) )
63 eqidd 2461 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( e  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b }  |->  ( ( G `  e
) ( .r `  R ) ( F `
 ( b  oF  -  e ) ) ) )  =  ( e  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  oF  -  e ) ) ) ) )
64 fveq2 5857 . . . . . . . 8  |-  ( e  =  ( b  oF  -  c )  ->  ( G `  e )  =  ( G `  ( b  oF  -  c
) ) )
65 oveq2 6283 . . . . . . . . 9  |-  ( e  =  ( b  oF  -  c )  ->  ( b  oF  -  e )  =  ( b  oF  -  ( b  oF  -  c
) ) )
6665fveq2d 5861 . . . . . . . 8  |-  ( e  =  ( b  oF  -  c )  ->  ( F `  ( b  oF  -  e ) )  =  ( F `  ( b  oF  -  ( b  oF  -  c ) ) ) )
6764, 66oveq12d 6293 . . . . . . 7  |-  ( e  =  ( b  oF  -  c )  ->  ( ( G `
 e ) ( .r `  R ) ( F `  (
b  oF  -  e ) ) )  =  ( ( G `
 ( b  oF  -  c ) ) ( .r `  R ) ( F `
 ( b  oF  -  ( b  oF  -  c
) ) ) ) )
6861, 62, 63, 67fmptco 6045 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b } 
|->  ( ( G `  e ) ( .r
`  R ) ( F `  ( b  oF  -  e
) ) ) )  o.  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b }  |->  ( b  oF  -  c ) ) )  =  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b }  |->  ( ( G `  (
b  oF  -  c ) ) ( .r `  R ) ( F `  (
b  oF  -  ( b  oF  -  c ) ) ) ) ) )
6912psrbagf 17778 . . . . . . . . . . . . 13  |-  ( ( I  e.  _V  /\  b  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin } )  ->  b : I --> NN0 )
7026, 69sylan 471 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  b : I --> NN0 )
7170adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  ->  b : I --> NN0 )
7226adantr 465 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  I  e.  _V )
73 elrabi 3251 . . . . . . . . . . . 12  |-  ( c  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b }  ->  c  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )
7412psrbagf 17778 . . . . . . . . . . . 12  |-  ( ( I  e.  _V  /\  c  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin } )  ->  c : I --> NN0 )
7572, 73, 74syl2an 477 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  ->  c : I --> NN0 )
76 nn0cn 10794 . . . . . . . . . . . . 13  |-  ( e  e.  NN0  ->  e  e.  CC )
77 nn0cn 10794 . . . . . . . . . . . . 13  |-  ( f  e.  NN0  ->  f  e.  CC )
78 nncan 9837 . . . . . . . . . . . . 13  |-  ( ( e  e.  CC  /\  f  e.  CC )  ->  ( e  -  (
e  -  f ) )  =  f )
7976, 77, 78syl2an 477 . . . . . . . . . . . 12  |-  ( ( e  e.  NN0  /\  f  e.  NN0 )  -> 
( e  -  (
e  -  f ) )  =  f )
8079adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin } )  /\  c  e.  { d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  /\  ( e  e. 
NN0  /\  f  e.  NN0 ) )  ->  (
e  -  ( e  -  f ) )  =  f )
8157, 71, 75, 80caonncan 6553 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  ->  ( b  oF  -  ( b  oF  -  c
) )  =  c )
8281fveq2d 5861 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  ->  ( F `  ( b  oF  -  ( b  oF  -  c ) ) )  =  ( F `  c ) )
8382oveq2d 6291 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  ->  ( ( G `
 ( b  oF  -  c ) ) ( .r `  R ) ( F `
 ( b  oF  -  ( b  oF  -  c
) ) ) )  =  ( ( G `
 ( b  oF  -  c ) ) ( .r `  R ) ( F `
 c ) ) )
84 psropprmul.s . . . . . . . . 9  |-  S  =  (oppr
`  R )
85 eqid 2460 . . . . . . . . 9  |-  ( .r
`  S )  =  ( .r `  S
)
861, 35, 84, 85opprmul 17052 . . . . . . . 8  |-  ( ( F `  c ) ( .r `  S
) ( G `  ( b  oF  -  c ) ) )  =  ( ( G `  ( b  oF  -  c
) ) ( .r
`  R ) ( F `  c ) )
8783, 86syl6eqr 2519 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  F  e.  B  /\  G  e.  B
)  /\  b  e.  { a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } )  /\  c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b } )  ->  ( ( G `
 ( b  oF  -  c ) ) ( .r `  R ) ( F `
 ( b  oF  -  ( b  oF  -  c
) ) ) )  =  ( ( F `
 c ) ( .r `  S ) ( G `  (
b  oF  -  c ) ) ) )
8887mpteq2dva 4526 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b }  |->  ( ( G `  (
b  oF  -  c ) ) ( .r `  R ) ( F `  (
b  oF  -  ( b  oF  -  c ) ) ) ) )  =  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  oF  -  c ) ) ) ) )
8968, 88eqtrd 2501 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b } 
|->  ( ( G `  e ) ( .r
`  R ) ( F `  ( b  oF  -  e
) ) ) )  o.  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b }  |->  ( b  oF  -  c ) ) )  =  ( c  e. 
{ d  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin }  |  d  oR  <_  b }  |->  ( ( F `  c
) ( .r `  S ) ( G `
 ( b  oF  -  c ) ) ) ) )
9089oveq2d 6291 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( R  gsumg  ( ( e  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  oF  -  e ) ) ) )  o.  (
c  e.  { d  e.  { a  e.  ( NN0  ^m  I
)  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( b  oF  -  c
) ) ) )  =  ( R  gsumg  ( c  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b } 
|->  ( ( F `  c ) ( .r
`  S ) ( G `  ( b  oF  -  c
) ) ) ) ) )
918mptex 6122 . . . . . . . 8  |-  ( c  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b } 
|->  ( ( F `  c ) ( .r
`  S ) ( G `  ( b  oF  -  c
) ) ) )  e.  _V
9291a1i 11 . . . . . . 7  |-  ( R  e.  Ring  ->  ( c  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b } 
|->  ( ( F `  c ) ( .r
`  S ) ( G `  ( b  oF  -  c
) ) ) )  e.  _V )
93 id 22 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Ring )
94 fvex 5867 . . . . . . . . 9  |-  (oppr `  R
)  e.  _V
9584, 94eqeltri 2544 . . . . . . . 8  |-  S  e. 
_V
9695a1i 11 . . . . . . 7  |-  ( R  e.  Ring  ->  S  e. 
_V )
9784, 1opprbas 17055 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  S )
9897a1i 11 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  S )
)
99 eqid 2460 . . . . . . . . 9  |-  ( +g  `  R )  =  ( +g  `  R )
10084, 99oppradd 17056 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  S )
101100a1i 11 . . . . . . 7  |-  ( R  e.  Ring  ->  ( +g  `  R )  =  ( +g  `  S ) )
10292, 93, 96, 98, 101gsumpropd 15810 . . . . . 6  |-  ( R  e.  Ring  ->  ( R 
gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  oF  -  c ) ) ) ) )  =  ( S  gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  oF  -  c ) ) ) ) ) )
1031023ad2ant1 1012 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( R  gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  oF  -  c ) ) ) ) )  =  ( S  gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  oF  -  c ) ) ) ) ) )
104103adantr 465 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( R  gsumg  ( c  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b } 
|->  ( ( F `  c ) ( .r
`  S ) ( G `  ( b  oF  -  c
) ) ) ) )  =  ( S 
gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  oF  -  c ) ) ) ) ) )
10556, 90, 1043eqtrd 2505 . . 3  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin } )  ->  ( R  gsumg  ( e  e.  { d  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |  d  oR  <_  b } 
|->  ( ( G `  e ) ( .r
`  R ) ( F `  ( b  oF  -  e
) ) ) ) )  =  ( S 
gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  oF  -  c ) ) ) ) ) )
106105mpteq2dva 4526 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (
b  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  |->  ( R  gsumg  ( e  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  oF  -  e ) ) ) ) ) )  =  ( b  e. 
{ a  e.  ( NN0  ^m  I )  |  ( `' a
" NN )  e. 
Fin }  |->  ( S 
gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  oF  -  c ) ) ) ) ) ) )
107 psropprmul.t . . 3  |-  .x.  =  ( .r `  Y )
10811, 13, 35, 107, 12, 14, 20psrmulfval 17802 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( G  .x.  F )  =  ( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  ( R  gsumg  ( e  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( ( G `  e ) ( .r `  R
) ( F `  ( b  oF  -  e ) ) ) ) ) ) )
109 psropprmul.z . . 3  |-  Z  =  ( I mPwSer  S )
110 eqid 2460 . . 3  |-  ( Base `  Z )  =  (
Base `  Z )
111 psropprmul.u . . 3  |-  .xb  =  ( .r `  Z )
11297a1i 11 . . . . . 6  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( Base `  R )  =  ( Base `  S
) )
113112psrbaspropd 18040 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( Base `  ( I mPwSer  R
) )  =  (
Base `  ( I mPwSer  S ) ) )
11411fveq2i 5860 . . . . . 6  |-  ( Base `  Y )  =  (
Base `  ( I mPwSer  R ) )
11513, 114eqtri 2489 . . . . 5  |-  B  =  ( Base `  (
I mPwSer  R ) )
116109fveq2i 5860 . . . . 5  |-  ( Base `  Z )  =  (
Base `  ( I mPwSer  S ) )
117113, 115, 1163eqtr4g 2526 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  B  =  ( Base `  Z
) )
11820, 117eleqtrd 2550 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  F  e.  ( Base `  Z
) )
11914, 117eleqtrd 2550 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  G  e.  ( Base `  Z
) )
120109, 110, 85, 111, 12, 118, 119psrmulfval 17802 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .xb  G )  =  ( b  e.  {
a  e.  ( NN0 
^m  I )  |  ( `' a " NN )  e.  Fin } 
|->  ( S  gsumg  ( c  e.  {
d  e.  { a  e.  ( NN0  ^m  I )  |  ( `' a " NN )  e.  Fin }  | 
d  oR  <_ 
b }  |->  ( ( F `  c ) ( .r `  S
) ( G `  ( b  oF  -  c ) ) ) ) ) ) )
121106, 108, 1203eqtr4rd 2512 1  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .xb  G )  =  ( G  .x.  F
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   {crab 2811   _Vcvv 3106    C_ wss 3469   class class class wbr 4440    |-> cmpt 4498   `'ccnv 4991   dom cdm 4992   "cima 4995    o. ccom 4996   Fun wfun 5573   -->wf 5575   -1-1-onto->wf1o 5578   ` cfv 5579  (class class class)co 6275    oFcof 6513    oRcofr 6514   supp csupp 6891    ^m cmap 7410   Fincfn 7506   finSupp cfsupp 7818   CCcc 9479    <_ cle 9618    - cmin 9794   NNcn 10525   NN0cn0 10784   Basecbs 14479   +g cplusg 14544   .rcmulr 14545   0gc0g 14684    gsumg cgsu 14685  CMndccmn 16587   Ringcrg 16979  opprcoppr 17048   mPwSer cmps 17764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-ofr 6516  df-om 6672  df-1st 6774  df-2nd 6775  df-supp 6892  df-tpos 6945  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-map 7412  df-pm 7413  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fsupp 7819  df-oi 7924  df-card 8309  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-n0 10785  df-z 10854  df-uz 11072  df-fz 11662  df-fzo 11782  df-seq 12064  df-hash 12361  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-plusg 14557  df-mulr 14558  df-sca 14560  df-vsca 14561  df-tset 14563  df-0g 14686  df-gsum 14687  df-mnd 15721  df-grp 15851  df-minusg 15852  df-cntz 16143  df-cmn 16589  df-abl 16590  df-mgp 16925  df-ur 16937  df-rng 16981  df-oppr 17049  df-psr 17769
This theorem is referenced by:  ply1opprmul  18044
  Copyright terms: Public domain W3C validator