MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrnegcl Structured version   Unicode version

Theorem psrnegcl 18367
Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s  |-  S  =  ( I mPwSer  R )
psrgrp.i  |-  ( ph  ->  I  e.  V )
psrgrp.r  |-  ( ph  ->  R  e.  Grp )
psrnegcl.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psrnegcl.i  |-  N  =  ( invg `  R )
psrnegcl.b  |-  B  =  ( Base `  S
)
psrnegcl.z  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
psrnegcl  |-  ( ph  ->  ( N  o.  X
)  e.  B )
Distinct variable group:    f, I
Allowed substitution hints:    ph( f)    B( f)    D( f)    R( f)    S( f)    N( f)    V( f)    X( f)

Proof of Theorem psrnegcl
StepHypRef Expression
1 eqid 2402 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
2 psrnegcl.i . . . . . 6  |-  N  =  ( invg `  R )
3 psrgrp.r . . . . . 6  |-  ( ph  ->  R  e.  Grp )
41, 2, 3grpinvf1o 16430 . . . . 5  |-  ( ph  ->  N : ( Base `  R ) -1-1-onto-> ( Base `  R
) )
5 f1of 5798 . . . . 5  |-  ( N : ( Base `  R
)
-1-1-onto-> ( Base `  R )  ->  N : ( Base `  R ) --> ( Base `  R ) )
64, 5syl 17 . . . 4  |-  ( ph  ->  N : ( Base `  R ) --> ( Base `  R ) )
7 psrgrp.s . . . . 5  |-  S  =  ( I mPwSer  R )
8 psrnegcl.d . . . . 5  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
9 psrnegcl.b . . . . 5  |-  B  =  ( Base `  S
)
10 psrnegcl.z . . . . 5  |-  ( ph  ->  X  e.  B )
117, 1, 8, 9, 10psrelbas 18350 . . . 4  |-  ( ph  ->  X : D --> ( Base `  R ) )
12 fco 5723 . . . 4  |-  ( ( N : ( Base `  R ) --> ( Base `  R )  /\  X : D --> ( Base `  R
) )  ->  ( N  o.  X ) : D --> ( Base `  R
) )
136, 11, 12syl2anc 659 . . 3  |-  ( ph  ->  ( N  o.  X
) : D --> ( Base `  R ) )
14 fvex 5858 . . . 4  |-  ( Base `  R )  e.  _V
15 ovex 6305 . . . . 5  |-  ( NN0 
^m  I )  e. 
_V
168, 15rabex2 4546 . . . 4  |-  D  e. 
_V
1714, 16elmap 7484 . . 3  |-  ( ( N  o.  X )  e.  ( ( Base `  R )  ^m  D
)  <->  ( N  o.  X ) : D --> ( Base `  R )
)
1813, 17sylibr 212 . 2  |-  ( ph  ->  ( N  o.  X
)  e.  ( (
Base `  R )  ^m  D ) )
19 psrgrp.i . . 3  |-  ( ph  ->  I  e.  V )
207, 1, 8, 9, 19psrbas 18348 . 2  |-  ( ph  ->  B  =  ( (
Base `  R )  ^m  D ) )
2118, 20eleqtrrd 2493 1  |-  ( ph  ->  ( N  o.  X
)  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1405    e. wcel 1842   {crab 2757   _Vcvv 3058   `'ccnv 4821   "cima 4825    o. ccom 4826   -->wf 5564   -1-1-onto->wf1o 5567   ` cfv 5568  (class class class)co 6277    ^m cmap 7456   Fincfn 7553   NNcn 10575   NN0cn0 10835   Basecbs 14839   Grpcgrp 16375   invgcminusg 16376   mPwSer cmps 18318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6520  df-om 6683  df-1st 6783  df-2nd 6784  df-supp 6902  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-oadd 7170  df-er 7347  df-map 7458  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-fsupp 7863  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-nn 10576  df-2 10634  df-3 10635  df-4 10636  df-5 10637  df-6 10638  df-7 10639  df-8 10640  df-9 10641  df-n0 10836  df-z 10905  df-uz 11127  df-fz 11725  df-struct 14841  df-ndx 14842  df-slot 14843  df-base 14844  df-plusg 14920  df-mulr 14921  df-sca 14923  df-vsca 14924  df-tset 14926  df-0g 15054  df-mgm 16194  df-sgrp 16233  df-mnd 16243  df-grp 16379  df-minusg 16380  df-psr 18323
This theorem is referenced by:  psrlinv  18368  psrgrp  18369  psrneg  18371
  Copyright terms: Public domain W3C validator