MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrcom Structured version   Unicode version

Theorem psrcom 18626
Description: Commutative law for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
psrring.s  |-  S  =  ( I mPwSer  R )
psrring.i  |-  ( ph  ->  I  e.  V )
psrring.r  |-  ( ph  ->  R  e.  Ring )
psrass.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psrass.t  |-  .X.  =  ( .r `  S )
psrass.b  |-  B  =  ( Base `  S
)
psrass.x  |-  ( ph  ->  X  e.  B )
psrass.y  |-  ( ph  ->  Y  e.  B )
psrcom.c  |-  ( ph  ->  R  e.  CRing )
Assertion
Ref Expression
psrcom  |-  ( ph  ->  ( X  .X.  Y
)  =  ( Y 
.X.  X ) )
Distinct variable groups:    f, I    R, f    f, X    f, Y
Allowed substitution hints:    ph( f)    B( f)    D( f)    S( f)    .X. ( f)    V( f)

Proof of Theorem psrcom
Dummy variables  x  k  z  g  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2423 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
2 eqid 2423 . . . . 5  |-  ( 0g
`  R )  =  ( 0g `  R
)
3 psrring.r . . . . . . 7  |-  ( ph  ->  R  e.  Ring )
4 ringcmn 17804 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. CMnd
)
53, 4syl 17 . . . . . 6  |-  ( ph  ->  R  e. CMnd )
65adantr 467 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  R  e. CMnd )
7 psrring.i . . . . . 6  |-  ( ph  ->  I  e.  V )
8 psrass.d . . . . . . 7  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
98psrbaglefi 18589 . . . . . 6  |-  ( ( I  e.  V  /\  x  e.  D )  ->  { g  e.  D  |  g  oR 
<_  x }  e.  Fin )
107, 9sylan 474 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  { g  e.  D  |  g  oR  <_  x }  e.  Fin )
113ad2antrr 731 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  D )  /\  k  e.  { g  e.  D  |  g  oR 
<_  x } )  ->  R  e.  Ring )
12 psrring.s . . . . . . . . . 10  |-  S  =  ( I mPwSer  R )
13 psrass.b . . . . . . . . . 10  |-  B  =  ( Base `  S
)
14 psrass.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  B )
1512, 1, 8, 13, 14psrelbas 18596 . . . . . . . . 9  |-  ( ph  ->  X : D --> ( Base `  R ) )
1615ad2antrr 731 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  D )  /\  k  e.  { g  e.  D  |  g  oR 
<_  x } )  ->  X : D --> ( Base `  R ) )
17 simpr 463 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  D )  /\  k  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
k  e.  { g  e.  D  |  g  oR  <_  x } )
18 breq1 4424 . . . . . . . . . . 11  |-  ( g  =  k  ->  (
g  oR  <_  x 
<->  k  oR  <_  x ) )
1918elrab 3230 . . . . . . . . . 10  |-  ( k  e.  { g  e.  D  |  g  oR  <_  x }  <->  ( k  e.  D  /\  k  oR  <_  x
) )
2017, 19sylib 200 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  D )  /\  k  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
( k  e.  D  /\  k  oR 
<_  x ) )
2120simpld 461 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  D )  /\  k  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
k  e.  D )
2216, 21ffvelrnd 6036 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  D )  /\  k  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
( X `  k
)  e.  ( Base `  R ) )
23 psrass.y . . . . . . . . . 10  |-  ( ph  ->  Y  e.  B )
2412, 1, 8, 13, 23psrelbas 18596 . . . . . . . . 9  |-  ( ph  ->  Y : D --> ( Base `  R ) )
2524ad2antrr 731 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  D )  /\  k  e.  { g  e.  D  |  g  oR 
<_  x } )  ->  Y : D --> ( Base `  R ) )
267ad2antrr 731 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  D )  /\  k  e.  { g  e.  D  |  g  oR 
<_  x } )  ->  I  e.  V )
27 simplr 761 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  D )  /\  k  e.  { g  e.  D  |  g  oR 
<_  x } )  ->  x  e.  D )
288psrbagf 18582 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  k  e.  D )  ->  k : I --> NN0 )
2926, 21, 28syl2anc 666 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  D )  /\  k  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
k : I --> NN0 )
3020simprd 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  D )  /\  k  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
k  oR  <_  x )
318psrbagcon 18588 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  ( x  e.  D  /\  k : I --> NN0  /\  k  oR  <_  x
) )  ->  (
( x  oF  -  k )  e.  D  /\  ( x  oF  -  k
)  oR  <_  x ) )
3226, 27, 29, 30, 31syl13anc 1267 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  D )  /\  k  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
( ( x  oF  -  k )  e.  D  /\  (
x  oF  -  k )  oR  <_  x ) )
3332simpld 461 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  D )  /\  k  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
( x  oF  -  k )  e.  D )
3425, 33ffvelrnd 6036 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  D )  /\  k  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
( Y `  (
x  oF  -  k ) )  e.  ( Base `  R
) )
35 eqid 2423 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
361, 35ringcl 17787 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( X `  k )  e.  ( Base `  R
)  /\  ( Y `  ( x  oF  -  k ) )  e.  ( Base `  R
) )  ->  (
( X `  k
) ( .r `  R ) ( Y `
 ( x  oF  -  k ) ) )  e.  (
Base `  R )
)
3711, 22, 34, 36syl3anc 1265 . . . . . 6  |-  ( ( ( ph  /\  x  e.  D )  /\  k  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
( ( X `  k ) ( .r
`  R ) ( Y `  ( x  oF  -  k
) ) )  e.  ( Base `  R
) )
38 eqid 2423 . . . . . 6  |-  ( k  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( ( X `  k ) ( .r
`  R ) ( Y `  ( x  oF  -  k
) ) ) )  =  ( k  e. 
{ g  e.  D  |  g  oR 
<_  x }  |->  ( ( X `  k ) ( .r `  R
) ( Y `  ( x  oF  -  k ) ) ) )
3937, 38fmptd 6059 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  (
k  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( ( X `
 k ) ( .r `  R ) ( Y `  (
x  oF  -  k ) ) ) ) : { g  e.  D  |  g  oR  <_  x }
--> ( Base `  R
) )
40 ovex 6331 . . . . . . . . . 10  |-  ( NN0 
^m  I )  e. 
_V
418, 40rabex2 4575 . . . . . . . . 9  |-  D  e. 
_V
4241a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  D  e.  _V )
43 rabexg 4572 . . . . . . . 8  |-  ( D  e.  _V  ->  { g  e.  D  |  g  oR  <_  x }  e.  _V )
4442, 43syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  { g  e.  D  |  g  oR  <_  x }  e.  _V )
45 mptexg 6148 . . . . . . 7  |-  ( { g  e.  D  | 
g  oR  <_  x }  e.  _V  ->  ( k  e.  {
g  e.  D  | 
g  oR  <_  x }  |->  ( ( X `  k ) ( .r `  R
) ( Y `  ( x  oF  -  k ) ) ) )  e.  _V )
4644, 45syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  ->  (
k  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( ( X `
 k ) ( .r `  R ) ( Y `  (
x  oF  -  k ) ) ) )  e.  _V )
47 funmpt 5635 . . . . . . 7  |-  Fun  (
k  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( ( X `
 k ) ( .r `  R ) ( Y `  (
x  oF  -  k ) ) ) )
4847a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  ->  Fun  ( k  e.  {
g  e.  D  | 
g  oR  <_  x }  |->  ( ( X `  k ) ( .r `  R
) ( Y `  ( x  oF  -  k ) ) ) ) )
49 fvex 5889 . . . . . . 7  |-  ( 0g
`  R )  e. 
_V
5049a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  ->  ( 0g `  R )  e. 
_V )
51 suppssdm 6936 . . . . . . . 8  |-  ( ( k  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( ( X `
 k ) ( .r `  R ) ( Y `  (
x  oF  -  k ) ) ) ) supp  ( 0g `  R ) )  C_  dom  ( k  e.  {
g  e.  D  | 
g  oR  <_  x }  |->  ( ( X `  k ) ( .r `  R
) ( Y `  ( x  oF  -  k ) ) ) )
5238dmmptss 5348 . . . . . . . 8  |-  dom  (
k  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( ( X `
 k ) ( .r `  R ) ( Y `  (
x  oF  -  k ) ) ) )  C_  { g  e.  D  |  g  oR  <_  x }
5351, 52sstri 3474 . . . . . . 7  |-  ( ( k  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( ( X `
 k ) ( .r `  R ) ( Y `  (
x  oF  -  k ) ) ) ) supp  ( 0g `  R ) )  C_  { g  e.  D  | 
g  oR  <_  x }
5453a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  ->  (
( k  e.  {
g  e.  D  | 
g  oR  <_  x }  |->  ( ( X `  k ) ( .r `  R
) ( Y `  ( x  oF  -  k ) ) ) ) supp  ( 0g
`  R ) ) 
C_  { g  e.  D  |  g  oR  <_  x }
)
55 suppssfifsupp 7902 . . . . . 6  |-  ( ( ( ( k  e. 
{ g  e.  D  |  g  oR 
<_  x }  |->  ( ( X `  k ) ( .r `  R
) ( Y `  ( x  oF  -  k ) ) ) )  e.  _V  /\ 
Fun  ( k  e. 
{ g  e.  D  |  g  oR 
<_  x }  |->  ( ( X `  k ) ( .r `  R
) ( Y `  ( x  oF  -  k ) ) ) )  /\  ( 0g `  R )  e. 
_V )  /\  ( { g  e.  D  |  g  oR 
<_  x }  e.  Fin  /\  ( ( k  e. 
{ g  e.  D  |  g  oR 
<_  x }  |->  ( ( X `  k ) ( .r `  R
) ( Y `  ( x  oF  -  k ) ) ) ) supp  ( 0g
`  R ) ) 
C_  { g  e.  D  |  g  oR  <_  x }
) )  ->  (
k  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( ( X `
 k ) ( .r `  R ) ( Y `  (
x  oF  -  k ) ) ) ) finSupp  ( 0g `  R ) )
5646, 48, 50, 10, 54, 55syl32anc 1273 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  (
k  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( ( X `
 k ) ( .r `  R ) ( Y `  (
x  oF  -  k ) ) ) ) finSupp  ( 0g `  R ) )
57 eqid 2423 . . . . . . 7  |-  { g  e.  D  |  g  oR  <_  x }  =  { g  e.  D  |  g  oR  <_  x }
588, 57psrbagconf1o 18591 . . . . . 6  |-  ( ( I  e.  V  /\  x  e.  D )  ->  ( j  e.  {
g  e.  D  | 
g  oR  <_  x }  |->  ( x  oF  -  j
) ) : {
g  e.  D  | 
g  oR  <_  x } -1-1-onto-> { g  e.  D  |  g  oR 
<_  x } )
597, 58sylan 474 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  (
j  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( x  oF  -  j ) ) : { g  e.  D  |  g  oR  <_  x }
-1-1-onto-> { g  e.  D  |  g  oR 
<_  x } )
601, 2, 6, 10, 39, 56, 59gsumf1o 17543 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  ( R  gsumg  ( k  e.  {
g  e.  D  | 
g  oR  <_  x }  |->  ( ( X `  k ) ( .r `  R
) ( Y `  ( x  oF  -  k ) ) ) ) )  =  ( R  gsumg  ( ( k  e. 
{ g  e.  D  |  g  oR 
<_  x }  |->  ( ( X `  k ) ( .r `  R
) ( Y `  ( x  oF  -  k ) ) ) )  o.  (
j  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( x  oF  -  j ) ) ) ) )
617ad2antrr 731 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  ->  I  e.  V )
62 simplr 761 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  ->  x  e.  D )
63 simpr 463 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
j  e.  { g  e.  D  |  g  oR  <_  x } )
648, 57psrbagconcl 18590 . . . . . . . 8  |-  ( ( I  e.  V  /\  x  e.  D  /\  j  e.  { g  e.  D  |  g  oR  <_  x }
)  ->  ( x  oF  -  j
)  e.  { g  e.  D  |  g  oR  <_  x } )
6561, 62, 63, 64syl3anc 1265 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
( x  oF  -  j )  e. 
{ g  e.  D  |  g  oR 
<_  x } )
66 eqidd 2424 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  (
j  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( x  oF  -  j ) )  =  ( j  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( x  oF  -  j ) ) )
67 eqidd 2424 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  (
k  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( ( X `
 k ) ( .r `  R ) ( Y `  (
x  oF  -  k ) ) ) )  =  ( k  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( ( X `  k ) ( .r
`  R ) ( Y `  ( x  oF  -  k
) ) ) ) )
68 fveq2 5879 . . . . . . . 8  |-  ( k  =  ( x  oF  -  j )  ->  ( X `  k )  =  ( X `  ( x  oF  -  j
) ) )
69 oveq2 6311 . . . . . . . . 9  |-  ( k  =  ( x  oF  -  j )  ->  ( x  oF  -  k )  =  ( x  oF  -  ( x  oF  -  j
) ) )
7069fveq2d 5883 . . . . . . . 8  |-  ( k  =  ( x  oF  -  j )  ->  ( Y `  ( x  oF  -  k ) )  =  ( Y `  ( x  oF  -  ( x  oF  -  j ) ) ) )
7168, 70oveq12d 6321 . . . . . . 7  |-  ( k  =  ( x  oF  -  j )  ->  ( ( X `
 k ) ( .r `  R ) ( Y `  (
x  oF  -  k ) ) )  =  ( ( X `
 ( x  oF  -  j ) ) ( .r `  R ) ( Y `
 ( x  oF  -  ( x  oF  -  j
) ) ) ) )
7265, 66, 67, 71fmptco 6069 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  ->  (
( k  e.  {
g  e.  D  | 
g  oR  <_  x }  |->  ( ( X `  k ) ( .r `  R
) ( Y `  ( x  oF  -  k ) ) ) )  o.  (
j  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( x  oF  -  j ) ) )  =  ( j  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( ( X `
 ( x  oF  -  j ) ) ( .r `  R ) ( Y `
 ( x  oF  -  ( x  oF  -  j
) ) ) ) ) )
738psrbagf 18582 . . . . . . . . . . . . . . . 16  |-  ( ( I  e.  V  /\  x  e.  D )  ->  x : I --> NN0 )
747, 73sylan 474 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  D )  ->  x : I --> NN0 )
7574adantr 467 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  ->  x : I --> NN0 )
7675ffvelrnda 6035 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR  <_  x } )  /\  z  e.  I )  ->  (
x `  z )  e.  NN0 )
77 breq1 4424 . . . . . . . . . . . . . . . . . 18  |-  ( g  =  j  ->  (
g  oR  <_  x 
<->  j  oR  <_  x ) )
7877elrab 3230 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  { g  e.  D  |  g  oR  <_  x }  <->  ( j  e.  D  /\  j  oR  <_  x
) )
7963, 78sylib 200 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
( j  e.  D  /\  j  oR 
<_  x ) )
8079simpld 461 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
j  e.  D )
818psrbagf 18582 . . . . . . . . . . . . . . 15  |-  ( ( I  e.  V  /\  j  e.  D )  ->  j : I --> NN0 )
8261, 80, 81syl2anc 666 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
j : I --> NN0 )
8382ffvelrnda 6035 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR  <_  x } )  /\  z  e.  I )  ->  (
j `  z )  e.  NN0 )
84 nn0cn 10881 . . . . . . . . . . . . . 14  |-  ( ( x `  z )  e.  NN0  ->  ( x `
 z )  e.  CC )
85 nn0cn 10881 . . . . . . . . . . . . . 14  |-  ( ( j `  z )  e.  NN0  ->  ( j `
 z )  e.  CC )
86 nncan 9905 . . . . . . . . . . . . . 14  |-  ( ( ( x `  z
)  e.  CC  /\  ( j `  z
)  e.  CC )  ->  ( ( x `
 z )  -  ( ( x `  z )  -  (
j `  z )
) )  =  ( j `  z ) )
8784, 85, 86syl2an 480 . . . . . . . . . . . . 13  |-  ( ( ( x `  z
)  e.  NN0  /\  ( j `  z
)  e.  NN0 )  ->  ( ( x `  z )  -  (
( x `  z
)  -  ( j `
 z ) ) )  =  ( j `
 z ) )
8876, 83, 87syl2anc 666 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR  <_  x } )  /\  z  e.  I )  ->  (
( x `  z
)  -  ( ( x `  z )  -  ( j `  z ) ) )  =  ( j `  z ) )
8988mpteq2dva 4508 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
( z  e.  I  |->  ( ( x `  z )  -  (
( x `  z
)  -  ( j `
 z ) ) ) )  =  ( z  e.  I  |->  ( j `  z ) ) )
90 ovex 6331 . . . . . . . . . . . . 13  |-  ( ( x `  z )  -  ( j `  z ) )  e. 
_V
9190a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR  <_  x } )  /\  z  e.  I )  ->  (
( x `  z
)  -  ( j `
 z ) )  e.  _V )
9275feqmptd 5932 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  ->  x  =  ( z  e.  I  |->  ( x `
 z ) ) )
9382feqmptd 5932 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
j  =  ( z  e.  I  |->  ( j `
 z ) ) )
9461, 76, 83, 92, 93offval2 6560 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
( x  oF  -  j )  =  ( z  e.  I  |->  ( ( x `  z )  -  (
j `  z )
) ) )
9561, 76, 91, 92, 94offval2 6560 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
( x  oF  -  ( x  oF  -  j ) )  =  ( z  e.  I  |->  ( ( x `  z )  -  ( ( x `
 z )  -  ( j `  z
) ) ) ) )
9689, 95, 933eqtr4d 2474 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
( x  oF  -  ( x  oF  -  j ) )  =  j )
9796fveq2d 5883 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
( Y `  (
x  oF  -  ( x  oF  -  j ) ) )  =  ( Y `
 j ) )
9897oveq2d 6319 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
( ( X `  ( x  oF  -  j ) ) ( .r `  R
) ( Y `  ( x  oF  -  ( x  oF  -  j ) ) ) )  =  ( ( X `  ( x  oF  -  j ) ) ( .r `  R
) ( Y `  j ) ) )
99 psrcom.c . . . . . . . . . 10  |-  ( ph  ->  R  e.  CRing )
10099ad2antrr 731 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  ->  R  e.  CRing )
10115ad2antrr 731 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  ->  X : D --> ( Base `  R ) )
10279simprd 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
j  oR  <_  x )
1038psrbagcon 18588 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  ( x  e.  D  /\  j : I --> NN0  /\  j  oR  <_  x
) )  ->  (
( x  oF  -  j )  e.  D  /\  ( x  oF  -  j
)  oR  <_  x ) )
10461, 62, 82, 102, 103syl13anc 1267 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
( ( x  oF  -  j )  e.  D  /\  (
x  oF  -  j )  oR  <_  x ) )
105104simpld 461 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
( x  oF  -  j )  e.  D )
106101, 105ffvelrnd 6036 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
( X `  (
x  oF  -  j ) )  e.  ( Base `  R
) )
10724ad2antrr 731 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  ->  Y : D --> ( Base `  R ) )
108107, 80ffvelrnd 6036 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
( Y `  j
)  e.  ( Base `  R ) )
1091, 35crngcom 17788 . . . . . . . . 9  |-  ( ( R  e.  CRing  /\  ( X `  ( x  oF  -  j
) )  e.  (
Base `  R )  /\  ( Y `  j
)  e.  ( Base `  R ) )  -> 
( ( X `  ( x  oF  -  j ) ) ( .r `  R
) ( Y `  j ) )  =  ( ( Y `  j ) ( .r
`  R ) ( X `  ( x  oF  -  j
) ) ) )
110100, 106, 108, 109syl3anc 1265 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
( ( X `  ( x  oF  -  j ) ) ( .r `  R
) ( Y `  j ) )  =  ( ( Y `  j ) ( .r
`  R ) ( X `  ( x  oF  -  j
) ) ) )
11198, 110eqtrd 2464 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  D )  /\  j  e.  { g  e.  D  |  g  oR 
<_  x } )  -> 
( ( X `  ( x  oF  -  j ) ) ( .r `  R
) ( Y `  ( x  oF  -  ( x  oF  -  j ) ) ) )  =  ( ( Y `  j ) ( .r
`  R ) ( X `  ( x  oF  -  j
) ) ) )
112111mpteq2dva 4508 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  ->  (
j  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( ( X `
 ( x  oF  -  j ) ) ( .r `  R ) ( Y `
 ( x  oF  -  ( x  oF  -  j
) ) ) ) )  =  ( j  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( ( Y `  j ) ( .r
`  R ) ( X `  ( x  oF  -  j
) ) ) ) )
11372, 112eqtrd 2464 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  (
( k  e.  {
g  e.  D  | 
g  oR  <_  x }  |->  ( ( X `  k ) ( .r `  R
) ( Y `  ( x  oF  -  k ) ) ) )  o.  (
j  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( x  oF  -  j ) ) )  =  ( j  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( ( Y `
 j ) ( .r `  R ) ( X `  (
x  oF  -  j ) ) ) ) )
114113oveq2d 6319 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  ( R  gsumg  ( ( k  e. 
{ g  e.  D  |  g  oR 
<_  x }  |->  ( ( X `  k ) ( .r `  R
) ( Y `  ( x  oF  -  k ) ) ) )  o.  (
j  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( x  oF  -  j ) ) ) )  =  ( R  gsumg  ( j  e.  {
g  e.  D  | 
g  oR  <_  x }  |->  ( ( Y `  j ) ( .r `  R
) ( X `  ( x  oF  -  j ) ) ) ) ) )
11560, 114eqtrd 2464 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  ( R  gsumg  ( k  e.  {
g  e.  D  | 
g  oR  <_  x }  |->  ( ( X `  k ) ( .r `  R
) ( Y `  ( x  oF  -  k ) ) ) ) )  =  ( R  gsumg  ( j  e.  {
g  e.  D  | 
g  oR  <_  x }  |->  ( ( Y `  j ) ( .r `  R
) ( X `  ( x  oF  -  j ) ) ) ) ) )
116115mpteq2dva 4508 . 2  |-  ( ph  ->  ( x  e.  D  |->  ( R  gsumg  ( k  e.  {
g  e.  D  | 
g  oR  <_  x }  |->  ( ( X `  k ) ( .r `  R
) ( Y `  ( x  oF  -  k ) ) ) ) ) )  =  ( x  e.  D  |->  ( R  gsumg  ( j  e.  { g  e.  D  |  g  oR  <_  x }  |->  ( ( Y `  j ) ( .r
`  R ) ( X `  ( x  oF  -  j
) ) ) ) ) ) )
117 psrass.t . . 3  |-  .X.  =  ( .r `  S )
11812, 13, 35, 117, 8, 14, 23psrmulfval 18602 . 2  |-  ( ph  ->  ( X  .X.  Y
)  =  ( x  e.  D  |->  ( R 
gsumg  ( k  e.  {
g  e.  D  | 
g  oR  <_  x }  |->  ( ( X `  k ) ( .r `  R
) ( Y `  ( x  oF  -  k ) ) ) ) ) ) )
11912, 13, 35, 117, 8, 23, 14psrmulfval 18602 . 2  |-  ( ph  ->  ( Y  .X.  X
)  =  ( x  e.  D  |->  ( R 
gsumg  ( j  e.  {
g  e.  D  | 
g  oR  <_  x }  |->  ( ( Y `  j ) ( .r `  R
) ( X `  ( x  oF  -  j ) ) ) ) ) ) )
120116, 118, 1193eqtr4d 2474 1  |-  ( ph  ->  ( X  .X.  Y
)  =  ( Y 
.X.  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1438    e. wcel 1869   {crab 2780   _Vcvv 3082    C_ wss 3437   class class class wbr 4421    |-> cmpt 4480   `'ccnv 4850   dom cdm 4851   "cima 4854    o. ccom 4855   Fun wfun 5593   -->wf 5595   -1-1-onto->wf1o 5598   ` cfv 5599  (class class class)co 6303    oFcof 6541    oRcofr 6542   supp csupp 6923    ^m cmap 7478   Fincfn 7575   finSupp cfsupp 7887   CCcc 9539    <_ cle 9678    - cmin 9862   NNcn 10611   NN0cn0 10871   Basecbs 15114   .rcmulr 15184   0gc0g 15331    gsumg cgsu 15332  CMndccmn 17423   Ringcrg 17773   CRingccrg 17774   mPwSer cmps 18568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-se 4811  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-isom 5608  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-of 6543  df-ofr 6544  df-om 6705  df-1st 6805  df-2nd 6806  df-supp 6924  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-2o 7189  df-oadd 7192  df-er 7369  df-map 7480  df-pm 7481  df-ixp 7529  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-fsupp 7888  df-oi 8029  df-card 8376  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-nn 10612  df-2 10670  df-3 10671  df-4 10672  df-5 10673  df-6 10674  df-7 10675  df-8 10676  df-9 10677  df-n0 10872  df-z 10940  df-uz 11162  df-fz 11787  df-fzo 11918  df-seq 12215  df-hash 12517  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-plusg 15196  df-mulr 15197  df-sca 15199  df-vsca 15200  df-tset 15202  df-0g 15333  df-gsum 15334  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-grp 16666  df-minusg 16667  df-cntz 16964  df-cmn 17425  df-abl 17426  df-mgp 17717  df-ur 17729  df-ring 17775  df-cring 17776  df-psr 18573
This theorem is referenced by:  psrcrng  18630
  Copyright terms: Public domain W3C validator