MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbasOLD Structured version   Unicode version

Theorem psrbasOLD 17448
Description: The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) Obsolete version of psrbas 17447 as of 8-Jul-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
psrbas.s  |-  S  =  ( I mPwSer  R )
psrbas.k  |-  K  =  ( Base `  R
)
psrbas.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psrbas.b  |-  B  =  ( Base `  S
)
psrbas.i  |-  ( ph  ->  I  e.  V )
Assertion
Ref Expression
psrbasOLD  |-  ( ph  ->  B  =  ( K  ^m  D ) )
Distinct variable group:    f, I
Allowed substitution hints:    ph( f)    B( f)    D( f)    R( f)    S( f)    K( f)    V( f)

Proof of Theorem psrbasOLD
Dummy variables  g  h  k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbas.s . . . . 5  |-  S  =  ( I mPwSer  R )
2 psrbas.k . . . . 5  |-  K  =  ( Base `  R
)
3 eqid 2442 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
4 eqid 2442 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2442 . . . . 5  |-  ( TopOpen `  R )  =  (
TopOpen `  R )
6 psrbas.d . . . . 5  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
7 eqidd 2443 . . . . 5  |-  ( (
ph  /\  R  e.  _V )  ->  ( K  ^m  D )  =  ( K  ^m  D
) )
8 eqid 2442 . . . . 5  |-  (  oF ( +g  `  R
)  |`  ( ( K  ^m  D )  X.  ( K  ^m  D
) ) )  =  (  oF ( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) )
9 eqid 2442 . . . . 5  |-  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D
)  |->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( g `  x ) ( .r
`  R ) ( h `  ( k  oF  -  x
) ) ) ) ) ) )  =  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) )
10 eqid 2442 . . . . 5  |-  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  { x } )  oF ( .r `  R
) g ) )  =  ( x  e.  K ,  g  e.  ( K  ^m  D
)  |->  ( ( D  X.  { x }
)  oF ( .r `  R ) g ) )
11 eqidd 2443 . . . . 5  |-  ( (
ph  /\  R  e.  _V )  ->  ( Xt_ `  ( D  X.  {
( TopOpen `  R ) } ) )  =  ( Xt_ `  ( D  X.  { ( TopOpen `  R ) } ) ) )
12 psrbas.i . . . . . 6  |-  ( ph  ->  I  e.  V )
1312adantr 465 . . . . 5  |-  ( (
ph  /\  R  e.  _V )  ->  I  e.  V )
14 simpr 461 . . . . 5  |-  ( (
ph  /\  R  e.  _V )  ->  R  e. 
_V )
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14psrval 17428 . . . 4  |-  ( (
ph  /\  R  e.  _V )  ->  S  =  ( { <. ( Base `  ndx ) ,  ( K  ^m  D
) >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) ) >. ,  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) )
1615fveq2d 5694 . . 3  |-  ( (
ph  /\  R  e.  _V )  ->  ( Base `  S )  =  (
Base `  ( { <. ( Base `  ndx ) ,  ( K  ^m  D ) >. ,  <. ( +g  `  ndx ) ,  (  oF
( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) ) >. ,  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) ) )
17 psrbas.b . . 3  |-  B  =  ( Base `  S
)
18 ovex 6115 . . . 4  |-  ( K  ^m  D )  e. 
_V
19 psrvalstr 17429 . . . . 5  |-  ( {
<. ( Base `  ndx ) ,  ( K  ^m  D ) >. ,  <. ( +g  `  ndx ) ,  (  oF
( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) ) >. ,  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) Struct  <. 1 ,  9 >.
20 baseid 14219 . . . . 5  |-  Base  = Slot  ( Base `  ndx )
21 snsstp1 4023 . . . . . 6  |-  { <. (
Base `  ndx ) ,  ( K  ^m  D
) >. }  C_  { <. (
Base `  ndx ) ,  ( K  ^m  D
) >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }
22 ssun1 3518 . . . . . 6  |-  { <. (
Base `  ndx ) ,  ( K  ^m  D
) >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  C_  ( { <. ( Base `  ndx ) ,  ( K  ^m  D ) >. ,  <. ( +g  `  ndx ) ,  (  oF
( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) ) >. ,  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } )
2321, 22sstri 3364 . . . . 5  |-  { <. (
Base `  ndx ) ,  ( K  ^m  D
) >. }  C_  ( { <. ( Base `  ndx ) ,  ( K  ^m  D ) >. ,  <. ( +g  `  ndx ) ,  (  oF
( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) ) >. ,  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } )
2419, 20, 23strfv 14207 . . . 4  |-  ( ( K  ^m  D )  e.  _V  ->  ( K  ^m  D )  =  ( Base `  ( { <. ( Base `  ndx ) ,  ( K  ^m  D ) >. ,  <. ( +g  `  ndx ) ,  (  oF
( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) ) >. ,  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) ) )
2518, 24ax-mp 5 . . 3  |-  ( K  ^m  D )  =  ( Base `  ( { <. ( Base `  ndx ) ,  ( K  ^m  D ) >. ,  <. ( +g  `  ndx ) ,  (  oF
( +g  `  R )  |`  ( ( K  ^m  D )  X.  ( K  ^m  D ) ) ) >. ,  <. ( .r `  ndx ) ,  ( g  e.  ( K  ^m  D ) ,  h  e.  ( K  ^m  D ) 
|->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( g `  x ) ( .r `  R
) ( h `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  K ,  g  e.  ( K  ^m  D )  |->  ( ( D  X.  {
x } )  oF ( .r `  R ) g ) ) >. ,  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( D  X.  { ( TopOpen `  R
) } ) )
>. } ) )
2616, 17, 253eqtr4g 2499 . 2  |-  ( (
ph  /\  R  e.  _V )  ->  B  =  ( K  ^m  D
) )
27 reldmpsr 17427 . . . . . . . 8  |-  Rel  dom mPwSer
2827ovprc2 6119 . . . . . . 7  |-  ( -.  R  e.  _V  ->  ( I mPwSer  R )  =  (/) )
2928adantl 466 . . . . . 6  |-  ( (
ph  /\  -.  R  e.  _V )  ->  (
I mPwSer  R )  =  (/) )
301, 29syl5eq 2486 . . . . 5  |-  ( (
ph  /\  -.  R  e.  _V )  ->  S  =  (/) )
3130fveq2d 5694 . . . 4  |-  ( (
ph  /\  -.  R  e.  _V )  ->  ( Base `  S )  =  ( Base `  (/) ) )
32 base0 14212 . . . 4  |-  (/)  =  (
Base `  (/) )
3331, 17, 323eqtr4g 2499 . . 3  |-  ( (
ph  /\  -.  R  e.  _V )  ->  B  =  (/) )
34 fvprc 5684 . . . . . 6  |-  ( -.  R  e.  _V  ->  (
Base `  R )  =  (/) )
3534adantl 466 . . . . 5  |-  ( (
ph  /\  -.  R  e.  _V )  ->  ( Base `  R )  =  (/) )
362, 35syl5eq 2486 . . . 4  |-  ( (
ph  /\  -.  R  e.  _V )  ->  K  =  (/) )
37 0nn0 10593 . . . . . . . 8  |-  0  e.  NN0
3837a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  -.  R  e.  _V )  /\  x  e.  I
)  ->  0  e.  NN0 )
39 eqid 2442 . . . . . . 7  |-  ( x  e.  I  |->  0 )  =  ( x  e.  I  |->  0 )
4038, 39fmptd 5866 . . . . . 6  |-  ( (
ph  /\  -.  R  e.  _V )  ->  (
x  e.  I  |->  0 ) : I --> NN0 )
41 0fin 7539 . . . . . . 7  |-  (/)  e.  Fin
42 nn0suppOLD 10633 . . . . . . . . 9  |-  ( ( x  e.  I  |->  0 ) : I --> NN0  ->  ( `' ( x  e.  I  |->  0 ) "
( _V  \  {
0 } ) )  =  ( `' ( x  e.  I  |->  0 ) " NN ) )
4340, 42syl 16 . . . . . . . 8  |-  ( (
ph  /\  -.  R  e.  _V )  ->  ( `' ( x  e.  I  |->  0 ) "
( _V  \  {
0 } ) )  =  ( `' ( x  e.  I  |->  0 ) " NN ) )
44 eqidd 2443 . . . . . . . . 9  |-  ( ( ( ph  /\  -.  R  e.  _V )  /\  x  e.  (
I  \  (/) ) )  ->  0  =  0 )
4544suppss2OLD 6314 . . . . . . . 8  |-  ( (
ph  /\  -.  R  e.  _V )  ->  ( `' ( x  e.  I  |->  0 ) "
( _V  \  {
0 } ) ) 
C_  (/) )
4643, 45eqsstr3d 3390 . . . . . . 7  |-  ( (
ph  /\  -.  R  e.  _V )  ->  ( `' ( x  e.  I  |->  0 ) " NN )  C_  (/) )
47 ssfi 7532 . . . . . . 7  |-  ( (
(/)  e.  Fin  /\  ( `' ( x  e.  I  |->  0 ) " NN )  C_  (/) )  -> 
( `' ( x  e.  I  |->  0 )
" NN )  e. 
Fin )
4841, 46, 47sylancr 663 . . . . . 6  |-  ( (
ph  /\  -.  R  e.  _V )  ->  ( `' ( x  e.  I  |->  0 ) " NN )  e.  Fin )
496psrbag 17430 . . . . . . . 8  |-  ( I  e.  V  ->  (
( x  e.  I  |->  0 )  e.  D  <->  ( ( x  e.  I  |->  0 ) : I --> NN0  /\  ( `' ( x  e.  I  |->  0 ) " NN )  e.  Fin )
) )
5012, 49syl 16 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  I  |->  0 )  e.  D  <->  ( ( x  e.  I  |->  0 ) : I --> NN0  /\  ( `' ( x  e.  I  |->  0 ) " NN )  e.  Fin ) ) )
5150adantr 465 . . . . . 6  |-  ( (
ph  /\  -.  R  e.  _V )  ->  (
( x  e.  I  |->  0 )  e.  D  <->  ( ( x  e.  I  |->  0 ) : I --> NN0  /\  ( `' ( x  e.  I  |->  0 ) " NN )  e.  Fin )
) )
5240, 48, 51mpbir2and 913 . . . . 5  |-  ( (
ph  /\  -.  R  e.  _V )  ->  (
x  e.  I  |->  0 )  e.  D )
53 ne0i 3642 . . . . 5  |-  ( ( x  e.  I  |->  0 )  e.  D  ->  D  =/=  (/) )
5452, 53syl 16 . . . 4  |-  ( (
ph  /\  -.  R  e.  _V )  ->  D  =/=  (/) )
55 fvex 5700 . . . . . 6  |-  ( Base `  R )  e.  _V
562, 55eqeltri 2512 . . . . 5  |-  K  e. 
_V
57 ovex 6115 . . . . . . 7  |-  ( NN0 
^m  I )  e. 
_V
5857rabex 4442 . . . . . 6  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  e.  _V
596, 58eqeltri 2512 . . . . 5  |-  D  e. 
_V
6056, 59map0 7252 . . . 4  |-  ( ( K  ^m  D )  =  (/)  <->  ( K  =  (/)  /\  D  =/=  (/) ) )
6136, 54, 60sylanbrc 664 . . 3  |-  ( (
ph  /\  -.  R  e.  _V )  ->  ( K  ^m  D )  =  (/) )
6233, 61eqtr4d 2477 . 2  |-  ( (
ph  /\  -.  R  e.  _V )  ->  B  =  ( K  ^m  D ) )
6326, 62pm2.61dan 789 1  |-  ( ph  ->  B  =  ( K  ^m  D ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2605   {crab 2718   _Vcvv 2971    \ cdif 3324    u. cun 3325    C_ wss 3327   (/)c0 3636   {csn 3876   {ctp 3880   <.cop 3882   class class class wbr 4291    e. cmpt 4349    X. cxp 4837   `'ccnv 4838    |` cres 4841   "cima 4842   -->wf 5413   ` cfv 5417  (class class class)co 6090    e. cmpt2 6092    oFcof 6317    oRcofr 6318    ^m cmap 7213   Fincfn 7309   0cc0 9281   1c1 9282    <_ cle 9418    - cmin 9594   NNcn 10321   9c9 10377   NN0cn0 10578   ndxcnx 14170   Basecbs 14173   +g cplusg 14237   .rcmulr 14238  Scalarcsca 14240   .scvsca 14241  TopSetcts 14243   TopOpenctopn 14359   Xt_cpt 14376    gsumg cgsu 14378   mPwSer cmps 17417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-int 4128  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6831  df-rdg 6865  df-1o 6919  df-oadd 6923  df-er 7100  df-map 7215  df-en 7310  df-dom 7311  df-sdom 7312  df-fin 7313  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-nn 10322  df-2 10379  df-3 10380  df-4 10381  df-5 10382  df-6 10383  df-7 10384  df-8 10385  df-9 10386  df-n0 10579  df-z 10646  df-uz 10861  df-fz 11437  df-struct 14175  df-ndx 14176  df-slot 14177  df-base 14178  df-plusg 14250  df-mulr 14251  df-sca 14253  df-vsca 14254  df-tset 14256  df-psr 17422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator