MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbag Structured version   Unicode version

Theorem psrbag 17883
Description: Elementhood in the set of finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
psrbag.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
Assertion
Ref Expression
psrbag  |-  ( I  e.  V  ->  ( F  e.  D  <->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
Distinct variable groups:    f, F    f, I
Allowed substitution hints:    D( f)    V( f)

Proof of Theorem psrbag
StepHypRef Expression
1 cnveq 5182 . . . . 5  |-  ( f  =  F  ->  `' f  =  `' F
)
21imaeq1d 5342 . . . 4  |-  ( f  =  F  ->  ( `' f " NN )  =  ( `' F " NN ) )
32eleq1d 2536 . . 3  |-  ( f  =  F  ->  (
( `' f " NN )  e.  Fin  <->  ( `' F " NN )  e.  Fin ) )
4 psrbag.d . . 3  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
53, 4elrab2 3268 . 2  |-  ( F  e.  D  <->  ( F  e.  ( NN0  ^m  I
)  /\  ( `' F " NN )  e. 
Fin ) )
6 nn0ex 10813 . . . 4  |-  NN0  e.  _V
7 elmapg 7445 . . . 4  |-  ( ( NN0  e.  _V  /\  I  e.  V )  ->  ( F  e.  ( NN0  ^m  I )  <-> 
F : I --> NN0 )
)
86, 7mpan 670 . . 3  |-  ( I  e.  V  ->  ( F  e.  ( NN0  ^m  I )  <->  F :
I --> NN0 ) )
98anbi1d 704 . 2  |-  ( I  e.  V  ->  (
( F  e.  ( NN0  ^m  I )  /\  ( `' F " NN )  e.  Fin ) 
<->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
105, 9syl5bb 257 1  |-  ( I  e.  V  ->  ( F  e.  D  <->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   {crab 2821   _Vcvv 3118   `'ccnv 5004   "cima 5008   -->wf 5590  (class class class)co 6295    ^m cmap 7432   Fincfn 7528   NNcn 10548   NN0cn0 10807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-i2m1 9572  ax-1ne0 9573  ax-rrecex 9576  ax-cnre 9577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-recs 7054  df-rdg 7088  df-map 7434  df-nn 10549  df-n0 10808
This theorem is referenced by:  psrbagf  17884  snifpsrbag  17885  psrbaglecl  17889  psrbagaddcl  17890  psrbagaddclOLD  17891  psrbagcon  17892  psrbaglefi  17893  psrbaglefiOLD  17894  psrbasOLD  17901  psrlidmOLD  17927  psrridmOLD  17929  mvridlemOLD  17945  mplcoe3OLD  17999  mplcoe5lem  18000  mplcoe5  18001  mplcoe2OLD  18003  mplbas2  18004  mplbas2OLD  18005  psrbag0  18029  psrbagsn  18030  psrbagfsupp  18045  psrbagsuppfiOLD  18046  evlslem3  18053
  Copyright terms: Public domain W3C validator