MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass23 Structured version   Unicode version

Theorem psrass23 17485
Description: Associative identities for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
psrrng.s  |-  S  =  ( I mPwSer  R )
psrrng.i  |-  ( ph  ->  I  e.  V )
psrrng.r  |-  ( ph  ->  R  e.  Ring )
psrass.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psrass.t  |-  .X.  =  ( .r `  S )
psrass.b  |-  B  =  ( Base `  S
)
psrass.x  |-  ( ph  ->  X  e.  B )
psrass.y  |-  ( ph  ->  Y  e.  B )
psrcom.c  |-  ( ph  ->  R  e.  CRing )
psrass.k  |-  K  =  ( Base `  R
)
psrass.n  |-  .x.  =  ( .s `  S )
psrass.a  |-  ( ph  ->  A  e.  K )
Assertion
Ref Expression
psrass23  |-  ( ph  ->  ( ( ( A 
.x.  X )  .X.  Y )  =  ( A  .x.  ( X 
.X.  Y ) )  /\  ( X  .X.  ( A  .x.  Y ) )  =  ( A 
.x.  ( X  .X.  Y ) ) ) )
Distinct variable groups:    f, I    R, f    f, X    f, Y
Allowed substitution hints:    ph( f)    A( f)    B( f)    D( f)    S( f)    .x. ( f)    .X. ( f)    K( f)    V( f)

Proof of Theorem psrass23
Dummy variables  x  k  y  w  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrrng.s . . . . . . . . . 10  |-  S  =  ( I mPwSer  R )
2 psrass.n . . . . . . . . . 10  |-  .x.  =  ( .s `  S )
3 eqid 2443 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
4 psrass.b . . . . . . . . . 10  |-  B  =  ( Base `  S
)
5 eqid 2443 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
6 psrass.d . . . . . . . . . 10  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
7 psrass.a . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  K )
87adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  D )  ->  A  e.  K )
9 psrass.k . . . . . . . . . . . 12  |-  K  =  ( Base `  R
)
108, 9syl6eleq 2533 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  D )  ->  A  e.  ( Base `  R
) )
1110adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  A  e.  ( Base `  R ) )
12 psrass.x . . . . . . . . . . 11  |-  ( ph  ->  X  e.  B )
1312ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  X  e.  B )
14 ssrab2 3440 . . . . . . . . . . 11  |-  { y  e.  D  |  y  oR  <_  k }  C_  D
15 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  x  e.  { y  e.  D  |  y  oR  <_  k } )
1614, 15sseldi 3357 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  x  e.  D )
171, 2, 3, 4, 5, 6, 11, 13, 16psrvscaval 17466 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( A  .x.  X ) `  x
)  =  ( A ( .r `  R
) ( X `  x ) ) )
1817oveq1d 6109 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( ( A 
.x.  X ) `  x ) ( .r
`  R ) ( Y `  ( k  oF  -  x
) ) )  =  ( ( A ( .r `  R ) ( X `  x
) ) ( .r
`  R ) ( Y `  ( k  oF  -  x
) ) ) )
19 psrrng.r . . . . . . . . . 10  |-  ( ph  ->  R  e.  Ring )
2019ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  R  e.  Ring )
211, 3, 6, 4, 13psrelbas 17453 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  X : D --> ( Base `  R ) )
2221, 16ffvelrnd 5847 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( X `  x
)  e.  ( Base `  R ) )
23 psrass.y . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  B )
2423ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  Y  e.  B )
251, 3, 6, 4, 24psrelbas 17453 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  Y : D --> ( Base `  R ) )
26 psrrng.i . . . . . . . . . . . . 13  |-  ( ph  ->  I  e.  V )
2726ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  I  e.  V )
28 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
k  e.  D )
29 eqid 2443 . . . . . . . . . . . . 13  |-  { y  e.  D  |  y  oR  <_  k }  =  { y  e.  D  |  y  oR  <_  k }
306, 29psrbagconcl 17446 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  k  e.  D  /\  x  e.  { y  e.  D  |  y  oR  <_  k } )  ->  ( k  oF  -  x
)  e.  { y  e.  D  |  y  oR  <_  k } )
3127, 28, 15, 30syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( k  oF  -  x )  e. 
{ y  e.  D  |  y  oR 
<_  k } )
3214, 31sseldi 3357 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( k  oF  -  x )  e.  D )
3325, 32ffvelrnd 5847 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( Y `  (
k  oF  -  x ) )  e.  ( Base `  R
) )
343, 5rngass 16664 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( A  e.  ( Base `  R )  /\  ( X `  x )  e.  ( Base `  R
)  /\  ( Y `  ( k  oF  -  x ) )  e.  ( Base `  R
) ) )  -> 
( ( A ( .r `  R ) ( X `  x
) ) ( .r
`  R ) ( Y `  ( k  oF  -  x
) ) )  =  ( A ( .r
`  R ) ( ( X `  x
) ( .r `  R ) ( Y `
 ( k  oF  -  x ) ) ) ) )
3520, 11, 22, 33, 34syl13anc 1220 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( A ( .r `  R ) ( X `  x
) ) ( .r
`  R ) ( Y `  ( k  oF  -  x
) ) )  =  ( A ( .r
`  R ) ( ( X `  x
) ( .r `  R ) ( Y `
 ( k  oF  -  x ) ) ) ) )
3618, 35eqtrd 2475 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( ( A 
.x.  X ) `  x ) ( .r
`  R ) ( Y `  ( k  oF  -  x
) ) )  =  ( A ( .r
`  R ) ( ( X `  x
) ( .r `  R ) ( Y `
 ( k  oF  -  x ) ) ) ) )
3736mpteq2dva 4381 . . . . . 6  |-  ( (
ph  /\  k  e.  D )  ->  (
x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( ( A  .x.  X ) `
 x ) ( .r `  R ) ( Y `  (
k  oF  -  x ) ) ) )  =  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( A ( .r
`  R ) ( ( X `  x
) ( .r `  R ) ( Y `
 ( k  oF  -  x ) ) ) ) ) )
3837oveq2d 6110 . . . . 5  |-  ( (
ph  /\  k  e.  D )  ->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( ( A  .x.  X
) `  x )
( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) )  =  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( A ( .r `  R
) ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  oF  -  x ) ) ) ) ) ) )
39 eqid 2443 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
40 eqid 2443 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
4119adantr 465 . . . . . 6  |-  ( (
ph  /\  k  e.  D )  ->  R  e.  Ring )
426psrbaglefi 17444 . . . . . . 7  |-  ( ( I  e.  V  /\  k  e.  D )  ->  { y  e.  D  |  y  oR 
<_  k }  e.  Fin )
4326, 42sylan 471 . . . . . 6  |-  ( (
ph  /\  k  e.  D )  ->  { y  e.  D  |  y  oR  <_  k }  e.  Fin )
443, 5rngcl 16661 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( X `  x )  e.  ( Base `  R
)  /\  ( Y `  ( k  oF  -  x ) )  e.  ( Base `  R
) )  ->  (
( X `  x
) ( .r `  R ) ( Y `
 ( k  oF  -  x ) ) )  e.  (
Base `  R )
)
4520, 22, 33, 44syl3anc 1218 . . . . . 6  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( X `  x ) ( .r
`  R ) ( Y `  ( k  oF  -  x
) ) )  e.  ( Base `  R
) )
46 ovex 6119 . . . . . . . . . . 11  |-  ( NN0 
^m  I )  e. 
_V
476, 46rabex2 4448 . . . . . . . . . 10  |-  D  e. 
_V
4847mptrabex 5952 . . . . . . . . 9  |-  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( X `  x ) ( .r
`  R ) ( Y `  ( k  oF  -  x
) ) ) )  e.  _V
49 funmpt 5457 . . . . . . . . 9  |-  Fun  (
x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  oF  -  x ) ) ) )
50 fvex 5704 . . . . . . . . 9  |-  ( 0g
`  R )  e. 
_V
5148, 49, 503pm3.2i 1166 . . . . . . . 8  |-  ( ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  oF  -  x ) ) ) )  e.  _V  /\  Fun  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) )  /\  ( 0g `  R )  e. 
_V )
5251a1i 11 . . . . . . 7  |-  ( (
ph  /\  k  e.  D )  ->  (
( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) )  e.  _V  /\ 
Fun  ( x  e. 
{ y  e.  D  |  y  oR 
<_  k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) )  /\  ( 0g `  R )  e. 
_V ) )
53 suppssdm 6706 . . . . . . . . 9  |-  ( ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  oF  -  x ) ) ) ) supp  ( 0g `  R ) )  C_  dom  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) )
54 eqid 2443 . . . . . . . . . 10  |-  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( X `  x ) ( .r
`  R ) ( Y `  ( k  oF  -  x
) ) ) )  =  ( x  e. 
{ y  e.  D  |  y  oR 
<_  k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) )
5554dmmptss 5337 . . . . . . . . 9  |-  dom  (
x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  oF  -  x ) ) ) )  C_  { y  e.  D  |  y  oR  <_  k }
5653, 55sstri 3368 . . . . . . . 8  |-  ( ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  oF  -  x ) ) ) ) supp  ( 0g `  R ) )  C_  { y  e.  D  | 
y  oR  <_ 
k }
5756a1i 11 . . . . . . 7  |-  ( (
ph  /\  k  e.  D )  ->  (
( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) supp  ( 0g
`  R ) ) 
C_  { y  e.  D  |  y  oR  <_  k }
)
58 suppssfifsupp 7638 . . . . . . 7  |-  ( ( ( ( x  e. 
{ y  e.  D  |  y  oR 
<_  k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) )  e.  _V  /\ 
Fun  ( x  e. 
{ y  e.  D  |  y  oR 
<_  k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) )  /\  ( 0g `  R )  e. 
_V )  /\  ( { y  e.  D  |  y  oR 
<_  k }  e.  Fin  /\  ( ( x  e. 
{ y  e.  D  |  y  oR 
<_  k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) supp  ( 0g
`  R ) ) 
C_  { y  e.  D  |  y  oR  <_  k }
) )  ->  (
x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  oF  -  x ) ) ) ) finSupp  ( 0g `  R ) )
5952, 43, 57, 58syl12anc 1216 . . . . . 6  |-  ( (
ph  /\  k  e.  D )  ->  (
x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  oF  -  x ) ) ) ) finSupp  ( 0g `  R ) )
603, 39, 40, 5, 41, 43, 10, 45, 59gsummulc2 16699 . . . . 5  |-  ( (
ph  /\  k  e.  D )  ->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( A ( .r `  R
) ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  oF  -  x ) ) ) ) ) )  =  ( A ( .r
`  R ) ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) ) ) )
6138, 60eqtrd 2475 . . . 4  |-  ( (
ph  /\  k  e.  D )  ->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( ( A  .x.  X
) `  x )
( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) )  =  ( A ( .r
`  R ) ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) ) ) )
6261mpteq2dva 4381 . . 3  |-  ( ph  ->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( ( A  .x.  X
) `  x )
( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) ) )  =  ( k  e.  D  |->  ( A ( .r `  R ) ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) ) ) ) )
63 psrass.t . . . 4  |-  .X.  =  ( .r `  S )
641, 2, 9, 4, 19, 7, 12psrvscacl 17467 . . . 4  |-  ( ph  ->  ( A  .x.  X
)  e.  B )
651, 4, 5, 63, 6, 64, 23psrmulfval 17459 . . 3  |-  ( ph  ->  ( ( A  .x.  X )  .X.  Y
)  =  ( k  e.  D  |->  ( R 
gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( ( A  .x.  X ) `
 x ) ( .r `  R ) ( Y `  (
k  oF  -  x ) ) ) ) ) ) )
661, 4, 63, 19, 12, 23psrmulcl 17462 . . . . 5  |-  ( ph  ->  ( X  .X.  Y
)  e.  B )
671, 2, 9, 4, 5, 6, 7, 66psrvsca 17465 . . . 4  |-  ( ph  ->  ( A  .x.  ( X  .X.  Y ) )  =  ( ( D  X.  { A }
)  oF ( .r `  R ) ( X  .X.  Y
) ) )
6847a1i 11 . . . . 5  |-  ( ph  ->  D  e.  _V )
69 ovex 6119 . . . . . 6  |-  ( R 
gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  oF  -  x ) ) ) ) )  e.  _V
7069a1i 11 . . . . 5  |-  ( (
ph  /\  k  e.  D )  ->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) )  e. 
_V )
71 fconstmpt 4885 . . . . . 6  |-  ( D  X.  { A }
)  =  ( k  e.  D  |->  A )
7271a1i 11 . . . . 5  |-  ( ph  ->  ( D  X.  { A } )  =  ( k  e.  D  |->  A ) )
731, 4, 5, 63, 6, 12, 23psrmulfval 17459 . . . . 5  |-  ( ph  ->  ( X  .X.  Y
)  =  ( k  e.  D  |->  ( R 
gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  oF  -  x ) ) ) ) ) ) )
7468, 8, 70, 72, 73offval2 6339 . . . 4  |-  ( ph  ->  ( ( D  X.  { A } )  oF ( .r `  R ) ( X 
.X.  Y ) )  =  ( k  e.  D  |->  ( A ( .r `  R ) ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) ) ) ) )
7567, 74eqtrd 2475 . . 3  |-  ( ph  ->  ( A  .x.  ( X  .X.  Y ) )  =  ( k  e.  D  |->  ( A ( .r `  R ) ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) ) ) ) )
7662, 65, 753eqtr4d 2485 . 2  |-  ( ph  ->  ( ( A  .x.  X )  .X.  Y
)  =  ( A 
.x.  ( X  .X.  Y ) ) )
771, 2, 3, 4, 5, 6, 11, 24, 32psrvscaval 17466 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( A  .x.  Y ) `  (
k  oF  -  x ) )  =  ( A ( .r
`  R ) ( Y `  ( k  oF  -  x
) ) ) )
7877oveq2d 6110 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( X `  x ) ( .r
`  R ) ( ( A  .x.  Y
) `  ( k  oF  -  x
) ) )  =  ( ( X `  x ) ( .r
`  R ) ( A ( .r `  R ) ( Y `
 ( k  oF  -  x ) ) ) ) )
79 psrcom.c . . . . . . . . . . 11  |-  ( ph  ->  R  e.  CRing )
8079ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  R  e.  CRing )
813, 5crngcom 16662 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  u  e.  ( Base `  R
)  /\  v  e.  ( Base `  R )
)  ->  ( u
( .r `  R
) v )  =  ( v ( .r
`  R ) u ) )
82813expb 1188 . . . . . . . . . 10  |-  ( ( R  e.  CRing  /\  (
u  e.  ( Base `  R )  /\  v  e.  ( Base `  R
) ) )  -> 
( u ( .r
`  R ) v )  =  ( v ( .r `  R
) u ) )
8380, 82sylan 471 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR  <_  k } )  /\  (
u  e.  ( Base `  R )  /\  v  e.  ( Base `  R
) ) )  -> 
( u ( .r
`  R ) v )  =  ( v ( .r `  R
) u ) )
843, 5rngass 16664 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
u  e.  ( Base `  R )  /\  v  e.  ( Base `  R
)  /\  w  e.  ( Base `  R )
) )  ->  (
( u ( .r
`  R ) v ) ( .r `  R ) w )  =  ( u ( .r `  R ) ( v ( .r
`  R ) w ) ) )
8520, 84sylan 471 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR  <_  k } )  /\  (
u  e.  ( Base `  R )  /\  v  e.  ( Base `  R
)  /\  w  e.  ( Base `  R )
) )  ->  (
( u ( .r
`  R ) v ) ( .r `  R ) w )  =  ( u ( .r `  R ) ( v ( .r
`  R ) w ) ) )
8622, 11, 33, 83, 85caov12d 6287 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( X `  x ) ( .r
`  R ) ( A ( .r `  R ) ( Y `
 ( k  oF  -  x ) ) ) )  =  ( A ( .r
`  R ) ( ( X `  x
) ( .r `  R ) ( Y `
 ( k  oF  -  x ) ) ) ) )
8778, 86eqtrd 2475 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  D )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( X `  x ) ( .r
`  R ) ( ( A  .x.  Y
) `  ( k  oF  -  x
) ) )  =  ( A ( .r
`  R ) ( ( X `  x
) ( .r `  R ) ( Y `
 ( k  oF  -  x ) ) ) ) )
8887mpteq2dva 4381 . . . . . 6  |-  ( (
ph  /\  k  e.  D )  ->  (
x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( X `
 x ) ( .r `  R ) ( ( A  .x.  Y ) `  (
k  oF  -  x ) ) ) )  =  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( A ( .r
`  R ) ( ( X `  x
) ( .r `  R ) ( Y `
 ( k  oF  -  x ) ) ) ) ) )
8988oveq2d 6110 . . . . 5  |-  ( (
ph  /\  k  e.  D )  ->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( ( A 
.x.  Y ) `  ( k  oF  -  x ) ) ) ) )  =  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( A ( .r `  R
) ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  oF  -  x ) ) ) ) ) ) )
9089, 60eqtrd 2475 . . . 4  |-  ( (
ph  /\  k  e.  D )  ->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( ( A 
.x.  Y ) `  ( k  oF  -  x ) ) ) ) )  =  ( A ( .r
`  R ) ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) ) ) )
9190mpteq2dva 4381 . . 3  |-  ( ph  ->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( ( A 
.x.  Y ) `  ( k  oF  -  x ) ) ) ) ) )  =  ( k  e.  D  |->  ( A ( .r `  R ) ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) ) ) ) )
921, 2, 9, 4, 19, 7, 23psrvscacl 17467 . . . 4  |-  ( ph  ->  ( A  .x.  Y
)  e.  B )
931, 4, 5, 63, 6, 12, 92psrmulfval 17459 . . 3  |-  ( ph  ->  ( X  .X.  ( A  .x.  Y ) )  =  ( k  e.  D  |->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( X `  x ) ( .r
`  R ) ( ( A  .x.  Y
) `  ( k  oF  -  x
) ) ) ) ) ) )
9491, 93, 753eqtr4d 2485 . 2  |-  ( ph  ->  ( X  .X.  ( A  .x.  Y ) )  =  ( A  .x.  ( X  .X.  Y ) ) )
9576, 94jca 532 1  |-  ( ph  ->  ( ( ( A 
.x.  X )  .X.  Y )  =  ( A  .x.  ( X 
.X.  Y ) )  /\  ( X  .X.  ( A  .x.  Y ) )  =  ( A 
.x.  ( X  .X.  Y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   {crab 2722   _Vcvv 2975    C_ wss 3331   {csn 3880   class class class wbr 4295    e. cmpt 4353    X. cxp 4841   `'ccnv 4842   dom cdm 4843   "cima 4846   Fun wfun 5415   ` cfv 5421  (class class class)co 6094    oFcof 6321    oRcofr 6322   supp csupp 6693    ^m cmap 7217   Fincfn 7313   finSupp cfsupp 7623    <_ cle 9422    - cmin 9598   NNcn 10325   NN0cn0 10582   Basecbs 14177   +g cplusg 14241   .rcmulr 14242   .scvsca 14245   0gc0g 14381    gsumg cgsu 14382   Ringcrg 16648   CRingccrg 16649   mPwSer cmps 17421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-se 4683  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-of 6323  df-ofr 6324  df-om 6480  df-1st 6580  df-2nd 6581  df-supp 6694  df-recs 6835  df-rdg 6869  df-1o 6923  df-2o 6924  df-oadd 6927  df-er 7104  df-map 7219  df-pm 7220  df-ixp 7267  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-fsupp 7624  df-oi 7727  df-card 8112  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-nn 10326  df-2 10383  df-3 10384  df-4 10385  df-5 10386  df-6 10387  df-7 10388  df-8 10389  df-9 10390  df-n0 10583  df-z 10650  df-uz 10865  df-fz 11441  df-fzo 11552  df-seq 11810  df-hash 12107  df-struct 14179  df-ndx 14180  df-slot 14181  df-base 14182  df-sets 14183  df-plusg 14254  df-mulr 14255  df-sca 14257  df-vsca 14258  df-tset 14260  df-0g 14383  df-gsum 14384  df-mnd 15418  df-mhm 15467  df-grp 15548  df-minusg 15549  df-ghm 15748  df-cntz 15838  df-cmn 16282  df-abl 16283  df-mgp 16595  df-ur 16607  df-rng 16650  df-cring 16651  df-psr 17426
This theorem is referenced by:  psrassa  17489
  Copyright terms: Public domain W3C validator