MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass1lem Structured version   Unicode version

Theorem psrass1lem 18529
Description: A group sum commutation used by psrass1 18557. (Contributed by Mario Carneiro, 5-Jan-2015.)
Hypotheses
Ref Expression
psrbag.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psrbagconf1o.1  |-  S  =  { y  e.  D  |  y  oR 
<_  F }
gsumbagdiag.i  |-  ( ph  ->  I  e.  V )
gsumbagdiag.f  |-  ( ph  ->  F  e.  D )
gsumbagdiag.b  |-  B  =  ( Base `  G
)
gsumbagdiag.g  |-  ( ph  ->  G  e. CMnd )
gsumbagdiag.x  |-  ( (
ph  /\  ( j  e.  S  /\  k  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  X  e.  B )
psrass1lem.y  |-  ( k  =  ( n  oF  -  j )  ->  X  =  Y )
Assertion
Ref Expression
psrass1lem  |-  ( ph  ->  ( G  gsumg  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )  =  ( G  gsumg  ( j  e.  S  |->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) ) ) ) )
Distinct variable groups:    f, j,
k, n, x, y, F    f, G, j, k, n, x, y   
n, V, x, y   
f, I, n, x, y    ph, j, k    S, j, k, n, x    B, j, k    D, j, k, n, x, y    f, X, n, x, y    f, Y, k, x, y
Allowed substitution hints:    ph( x, y, f, n)    B( x, y, f, n)    D( f)    S( y, f)    I( j, k)    V( f, j, k)    X( j, k)    Y( j, n)

Proof of Theorem psrass1lem
Dummy variables  m  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbag.d . . . 4  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
2 psrbagconf1o.1 . . . 4  |-  S  =  { y  e.  D  |  y  oR 
<_  F }
3 gsumbagdiag.i . . . 4  |-  ( ph  ->  I  e.  V )
4 gsumbagdiag.f . . . 4  |-  ( ph  ->  F  e.  D )
5 gsumbagdiag.b . . . 4  |-  B  =  ( Base `  G
)
6 gsumbagdiag.g . . . 4  |-  ( ph  ->  G  e. CMnd )
71, 2, 3, 4gsumbagdiaglem 18527 . . . . 5  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } ) )  ->  (
j  e.  S  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } ) )
8 gsumbagdiag.x . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  S  /\  k  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  X  e.  B )
98anassrs 652 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  S )  /\  k  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  X  e.  B )
10 eqid 2420 . . . . . . . . . . 11  |-  ( k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  =  ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )
119, 10fmptd 6052 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  S )  ->  (
k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B )
123adantr 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  S )  ->  I  e.  V )
13 ssrab2 3543 . . . . . . . . . . . . . 14  |-  { y  e.  D  |  y  oR  <_  F }  C_  D
142, 13eqsstri 3491 . . . . . . . . . . . . 13  |-  S  C_  D
154adantr 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  S )  ->  F  e.  D )
16 simpr 462 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  S )  ->  j  e.  S )
171, 2psrbagconcl 18525 . . . . . . . . . . . . . 14  |-  ( ( I  e.  V  /\  F  e.  D  /\  j  e.  S )  ->  ( F  oF  -  j )  e.  S )
1812, 15, 16, 17syl3anc 1264 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  S )  ->  ( F  oF  -  j
)  e.  S )
1914, 18sseldi 3459 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  S )  ->  ( F  oF  -  j
)  e.  D )
20 eqid 2420 . . . . . . . . . . . . 13  |-  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  =  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }
211, 20psrbagconf1o 18526 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  ( F  oF  -  j )  e.  D )  ->  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } -1-1-onto-> { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )
2212, 19, 21syl2anc 665 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  S )  ->  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } -1-1-onto-> { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )
23 f1of 5822 . . . . . . . . . . 11  |-  ( ( m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } -1-1-onto-> { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) }  ->  ( m  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  ( ( F  oF  -  j )  oF  -  m
) ) : {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
2422, 23syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  S )  ->  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
25 fco 5747 . . . . . . . . . 10  |-  ( ( ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B  /\  ( m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  -> 
( ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )  o.  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B )
2611, 24, 25syl2anc 665 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  S )  ->  (
( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  o.  ( m  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  ( ( F  oF  -  j )  oF  -  m
) ) ) : { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } --> B )
2712adantr 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  I  e.  V )
2815adantr 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  F  e.  D )
291psrbagf 18517 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  F  e.  D )  ->  F : I --> NN0 )
3027, 28, 29syl2anc 665 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  F :
I --> NN0 )
3130ffvelrnda 6028 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  z  e.  I )  ->  ( F `  z
)  e.  NN0 )
3216adantr 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  j  e.  S )
3314, 32sseldi 3459 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  j  e.  D )
341psrbagf 18517 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  j  e.  D )  ->  j : I --> NN0 )
3527, 33, 34syl2anc 665 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  j :
I --> NN0 )
3635ffvelrnda 6028 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  z  e.  I )  ->  ( j `  z
)  e.  NN0 )
37 ssrab2 3543 . . . . . . . . . . . . . . . . . 18  |-  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  C_  D
38 simpr 462 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
3937, 38sseldi 3459 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  m  e.  D )
401psrbagf 18517 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  m  e.  D )  ->  m : I --> NN0 )
4127, 39, 40syl2anc 665 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  m :
I --> NN0 )
4241ffvelrnda 6028 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  z  e.  I )  ->  ( m `  z
)  e.  NN0 )
43 nn0cn 10868 . . . . . . . . . . . . . . . 16  |-  ( ( F `  z )  e.  NN0  ->  ( F `
 z )  e.  CC )
44 nn0cn 10868 . . . . . . . . . . . . . . . 16  |-  ( ( j `  z )  e.  NN0  ->  ( j `
 z )  e.  CC )
45 nn0cn 10868 . . . . . . . . . . . . . . . 16  |-  ( ( m `  z )  e.  NN0  ->  ( m `
 z )  e.  CC )
46 sub32 9897 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  z
)  e.  CC  /\  ( j `  z
)  e.  CC  /\  ( m `  z
)  e.  CC )  ->  ( ( ( F `  z )  -  ( j `  z ) )  -  ( m `  z
) )  =  ( ( ( F `  z )  -  (
m `  z )
)  -  ( j `
 z ) ) )
4743, 44, 45, 46syl3an 1306 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  z
)  e.  NN0  /\  ( j `  z
)  e.  NN0  /\  ( m `  z
)  e.  NN0 )  ->  ( ( ( F `
 z )  -  ( j `  z
) )  -  (
m `  z )
)  =  ( ( ( F `  z
)  -  ( m `
 z ) )  -  ( j `  z ) ) )
4831, 36, 42, 47syl3anc 1264 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  z  e.  I )  ->  ( ( ( F `
 z )  -  ( j `  z
) )  -  (
m `  z )
)  =  ( ( ( F `  z
)  -  ( m `
 z ) )  -  ( j `  z ) ) )
4948mpteq2dva 4503 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( z  e.  I  |->  ( ( ( F `  z
)  -  ( j `
 z ) )  -  ( m `  z ) ) )  =  ( z  e.  I  |->  ( ( ( F `  z )  -  ( m `  z ) )  -  ( j `  z
) ) ) )
50 ovex 6324 . . . . . . . . . . . . . . 15  |-  ( ( F `  z )  -  ( j `  z ) )  e. 
_V
5150a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  z  e.  I )  ->  ( ( F `  z )  -  (
j `  z )
)  e.  _V )
5230feqmptd 5925 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  F  =  ( z  e.  I  |->  ( F `  z
) ) )
5335feqmptd 5925 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  j  =  ( z  e.  I  |->  ( j `  z
) ) )
5427, 31, 36, 52, 53offval2 6553 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( F  oF  -  j
)  =  ( z  e.  I  |->  ( ( F `  z )  -  ( j `  z ) ) ) )
5541feqmptd 5925 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  m  =  ( z  e.  I  |->  ( m `  z
) ) )
5627, 51, 42, 54, 55offval2 6553 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( ( F  oF  -  j
)  oF  -  m )  =  ( z  e.  I  |->  ( ( ( F `  z )  -  (
j `  z )
)  -  ( m `
 z ) ) ) )
57 ovex 6324 . . . . . . . . . . . . . . 15  |-  ( ( F `  z )  -  ( m `  z ) )  e. 
_V
5857a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  z  e.  I )  ->  ( ( F `  z )  -  (
m `  z )
)  e.  _V )
5927, 31, 42, 52, 55offval2 6553 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( F  oF  -  m
)  =  ( z  e.  I  |->  ( ( F `  z )  -  ( m `  z ) ) ) )
6027, 58, 36, 59, 53offval2 6553 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( ( F  oF  -  m
)  oF  -  j )  =  ( z  e.  I  |->  ( ( ( F `  z )  -  (
m `  z )
)  -  ( j `
 z ) ) ) )
6149, 56, 603eqtr4d 2471 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( ( F  oF  -  j
)  oF  -  m )  =  ( ( F  oF  -  m )  oF  -  j ) )
6219adantr 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( F  oF  -  j
)  e.  D )
631, 20psrbagconcl 18525 . . . . . . . . . . . . 13  |-  ( ( I  e.  V  /\  ( F  oF  -  j )  e.  D  /\  m  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( ( F  oF  -  j
)  oF  -  m )  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
6427, 62, 38, 63syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( ( F  oF  -  j
)  oF  -  m )  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
6561, 64eqeltrrd 2509 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( ( F  oF  -  m
)  oF  -  j )  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
6661mpteq2dva 4503 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  S )  ->  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) )  =  ( m  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  ( ( F  oF  -  m )  oF  -  j
) ) )
67 nfcv 2582 . . . . . . . . . . . . 13  |-  F/_ n X
68 nfcsb1v 3408 . . . . . . . . . . . . 13  |-  F/_ k [_ n  /  k ]_ X
69 csbeq1a 3401 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  X  =  [_ n  /  k ]_ X )
7067, 68, 69cbvmpt 4508 . . . . . . . . . . . 12  |-  ( k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  =  ( n  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  [_ n  /  k ]_ X )
7170a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  S )  ->  (
k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  =  ( n  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  [_ n  /  k ]_ X ) )
72 csbeq1 3395 . . . . . . . . . . 11  |-  ( n  =  ( ( F  oF  -  m
)  oF  -  j )  ->  [_ n  /  k ]_ X  =  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X )
7365, 66, 71, 72fmptco 6062 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  S )  ->  (
( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  o.  ( m  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  ( ( F  oF  -  j )  oF  -  m
) ) )  =  ( m  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )
7473feq1d 5723 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  S )  ->  (
( ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )  o.  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B  <->  ( m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X ) : {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B ) )
7526, 74mpbid 213 . . . . . . . 8  |-  ( (
ph  /\  j  e.  S )  ->  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B )
76 eqid 2420 . . . . . . . . 9  |-  ( m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)  =  ( m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)
7776fmpt 6049 . . . . . . . 8  |-  ( A. m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X  e.  B  <->  ( m  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X ) : {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B )
7875, 77sylibr 215 . . . . . . 7  |-  ( (
ph  /\  j  e.  S )  ->  A. m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) }
[_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X  e.  B
)
7978r19.21bi 2792 . . . . . 6  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  [_ ( ( F  oF  -  m )  oF  -  j )  / 
k ]_ X  e.  B
)
8079anasss 651 . . . . 5  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X  e.  B )
817, 80syldan 472 . . . 4  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } ) )  ->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X  e.  B )
821, 2, 3, 4, 5, 6, 81gsumbagdiag 18528 . . 3  |-  ( ph  ->  ( G  gsumg  ( m  e.  S ,  j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )  =  ( G  gsumg  ( j  e.  S ,  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )
83 eqid 2420 . . . 4  |-  ( 0g
`  G )  =  ( 0g `  G
)
841psrbaglefi 18524 . . . . . 6  |-  ( ( I  e.  V  /\  F  e.  D )  ->  { y  e.  D  |  y  oR 
<_  F }  e.  Fin )
853, 4, 84syl2anc 665 . . . . 5  |-  ( ph  ->  { y  e.  D  |  y  oR 
<_  F }  e.  Fin )
862, 85syl5eqel 2512 . . . 4  |-  ( ph  ->  S  e.  Fin )
873adantr 466 . . . . 5  |-  ( (
ph  /\  m  e.  S )  ->  I  e.  V )
884adantr 466 . . . . . . 7  |-  ( (
ph  /\  m  e.  S )  ->  F  e.  D )
89 simpr 462 . . . . . . 7  |-  ( (
ph  /\  m  e.  S )  ->  m  e.  S )
901, 2psrbagconcl 18525 . . . . . . 7  |-  ( ( I  e.  V  /\  F  e.  D  /\  m  e.  S )  ->  ( F  oF  -  m )  e.  S )
9187, 88, 89, 90syl3anc 1264 . . . . . 6  |-  ( (
ph  /\  m  e.  S )  ->  ( F  oF  -  m
)  e.  S )
9214, 91sseldi 3459 . . . . 5  |-  ( (
ph  /\  m  e.  S )  ->  ( F  oF  -  m
)  e.  D )
931psrbaglefi 18524 . . . . 5  |-  ( ( I  e.  V  /\  ( F  oF  -  m )  e.  D
)  ->  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  e.  Fin )
9487, 92, 93syl2anc 665 . . . 4  |-  ( (
ph  /\  m  e.  S )  ->  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  e.  Fin )
95 xpfi 7839 . . . . 5  |-  ( ( S  e.  Fin  /\  S  e.  Fin )  ->  ( S  X.  S
)  e.  Fin )
9686, 86, 95syl2anc 665 . . . 4  |-  ( ph  ->  ( S  X.  S
)  e.  Fin )
97 simprl 762 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } ) )  ->  m  e.  S )
987simpld 460 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } ) )  ->  j  e.  S )
99 brxp 4876 . . . . . . 7  |-  ( m ( S  X.  S
) j  <->  ( m  e.  S  /\  j  e.  S ) )
10097, 98, 99sylanbrc 668 . . . . . 6  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } ) )  ->  m
( S  X.  S
) j )
101100pm2.24d 137 . . . . 5  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } ) )  ->  ( -.  m ( S  X.  S ) j  ->  [_ ( ( F  oF  -  m )  oF  -  j
)  /  k ]_ X  =  ( 0g `  G ) ) )
102101impr 623 . . . 4  |-  ( (
ph  /\  ( (
m  e.  S  /\  j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) } )  /\  -.  m ( S  X.  S ) j ) )  ->  [_ ( ( F  oF  -  m )  oF  -  j )  / 
k ]_ X  =  ( 0g `  G ) )
1035, 83, 6, 86, 94, 81, 96, 102gsum2d2 17534 . . 3  |-  ( ph  ->  ( G  gsumg  ( m  e.  S ,  j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )  =  ( G  gsumg  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) ) )
1041psrbaglefi 18524 . . . . 5  |-  ( ( I  e.  V  /\  ( F  oF  -  j )  e.  D )  ->  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  e.  Fin )
10512, 19, 104syl2anc 665 . . . 4  |-  ( (
ph  /\  j  e.  S )  ->  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  e.  Fin )
106 simprl 762 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  j  e.  S )
1071, 2, 3, 4gsumbagdiaglem 18527 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  (
m  e.  S  /\  j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) } ) )
108107simpld 460 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  m  e.  S )
109 brxp 4876 . . . . . . 7  |-  ( j ( S  X.  S
) m  <->  ( j  e.  S  /\  m  e.  S ) )
110106, 108, 109sylanbrc 668 . . . . . 6  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  j
( S  X.  S
) m )
111110pm2.24d 137 . . . . 5  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  ( -.  j ( S  X.  S ) m  ->  [_ ( ( F  oF  -  m )  oF  -  j
)  /  k ]_ X  =  ( 0g `  G ) ) )
112111impr 623 . . . 4  |-  ( (
ph  /\  ( (
j  e.  S  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  -.  j ( S  X.  S ) m ) )  ->  [_ ( ( F  oF  -  m )  oF  -  j )  / 
k ]_ X  =  ( 0g `  G ) )
1135, 83, 6, 86, 105, 80, 96, 112gsum2d2 17534 . . 3  |-  ( ph  ->  ( G  gsumg  ( j  e.  S ,  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )  =  ( G  gsumg  ( j  e.  S  |->  ( G  gsumg  ( m  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) ) )
11482, 103, 1133eqtr3d 2469 . 2  |-  ( ph  ->  ( G  gsumg  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) )  =  ( G  gsumg  ( j  e.  S  |->  ( G 
gsumg  ( m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) ) )
1156adantr 466 . . . . . . . 8  |-  ( (
ph  /\  m  e.  S )  ->  G  e. CMnd )
11681anassrs 652 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  S )  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } )  ->  [_ ( ( F  oF  -  m )  oF  -  j )  / 
k ]_ X  e.  B
)
117 eqid 2420 . . . . . . . . 9  |-  ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)  =  ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)
118116, 117fmptd 6052 . . . . . . . 8  |-  ( (
ph  /\  m  e.  S )  ->  (
j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) : { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) } --> B )
119 ovex 6324 . . . . . . . . . . . 12  |-  ( NN0 
^m  I )  e. 
_V
1201, 119rabex2 4569 . . . . . . . . . . 11  |-  D  e. 
_V
121120a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  S )  ->  D  e.  _V )
122 rabexg 4566 . . . . . . . . . 10  |-  ( D  e.  _V  ->  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  e.  _V )
123 mptexg 6141 . . . . . . . . . 10  |-  ( { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  e.  _V  ->  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)  e.  _V )
124121, 122, 1233syl 18 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  S )  ->  (
j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)  e.  _V )
125 funmpt 5628 . . . . . . . . . 10  |-  Fun  (
j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)
126125a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  S )  ->  Fun  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )
127 fvex 5882 . . . . . . . . . 10  |-  ( 0g
`  G )  e. 
_V
128127a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  S )  ->  ( 0g `  G )  e. 
_V )
129 suppssdm 6929 . . . . . . . . . . 11  |-  ( ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) supp  ( 0g `  G ) )  C_  dom  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)
130117dmmptss 5342 . . . . . . . . . . 11  |-  dom  (
j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }
131129, 130sstri 3470 . . . . . . . . . 10  |-  ( ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) supp  ( 0g `  G ) )  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }
132131a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  S )  ->  (
( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) supp  ( 0g `  G ) )  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) } )
133 suppssfifsupp 7895 . . . . . . . . 9  |-  ( ( ( ( j  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } 
|->  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X )  e.  _V  /\ 
Fun  ( j  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } 
|->  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X )  /\  ( 0g `  G )  e. 
_V )  /\  ( { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) }  e.  Fin  /\  (
( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) supp  ( 0g `  G ) )  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) } ) )  ->  ( j  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } 
|->  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X ) finSupp  ( 0g
`  G ) )
134124, 126, 128, 94, 132, 133syl32anc 1272 . . . . . . . 8  |-  ( (
ph  /\  m  e.  S )  ->  (
j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) finSupp  ( 0g `  G
) )
1355, 83, 115, 94, 118, 134gsumcl 17477 . . . . . . 7  |-  ( (
ph  /\  m  e.  S )  ->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )  e.  B
)
136 eqid 2420 . . . . . . 7  |-  ( m  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )  =  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )
137135, 136fmptd 6052 . . . . . 6  |-  ( ph  ->  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) : S --> B )
1381, 2psrbagconf1o 18526 . . . . . . . 8  |-  ( ( I  e.  V  /\  F  e.  D )  ->  ( m  e.  S  |->  ( F  oF  -  m ) ) : S -1-1-onto-> S )
1393, 4, 138syl2anc 665 . . . . . . 7  |-  ( ph  ->  ( m  e.  S  |->  ( F  oF  -  m ) ) : S -1-1-onto-> S )
140 f1ocnv 5834 . . . . . . 7  |-  ( ( m  e.  S  |->  ( F  oF  -  m ) ) : S -1-1-onto-> S  ->  `' (
m  e.  S  |->  ( F  oF  -  m ) ) : S -1-1-onto-> S )
141 f1of 5822 . . . . . . 7  |-  ( `' ( m  e.  S  |->  ( F  oF  -  m ) ) : S -1-1-onto-> S  ->  `' (
m  e.  S  |->  ( F  oF  -  m ) ) : S --> S )
142139, 140, 1413syl 18 . . . . . 6  |-  ( ph  ->  `' ( m  e.  S  |->  ( F  oF  -  m )
) : S --> S )
143 fco 5747 . . . . . 6  |-  ( ( ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) : S --> B  /\  `' ( m  e.  S  |->  ( F  oF  -  m ) ) : S --> S )  ->  ( ( m  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) ) : S --> B )
144137, 142, 143syl2anc 665 . . . . 5  |-  ( ph  ->  ( ( m  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) ) : S --> B )
145 coass 5365 . . . . . . . 8  |-  ( ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  oF  -  m
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) )  =  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( ( m  e.  S  |->  ( F  oF  -  m ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) ) )
146 f1ococnv2 5848 . . . . . . . . . 10  |-  ( ( m  e.  S  |->  ( F  oF  -  m ) ) : S -1-1-onto-> S  ->  ( (
m  e.  S  |->  ( F  oF  -  m ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) )  =  (  _I  |`  S )
)
147139, 146syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( m  e.  S  |->  ( F  oF  -  m )
)  o.  `' ( m  e.  S  |->  ( F  oF  -  m ) ) )  =  (  _I  |`  S ) )
148147coeq2d 5008 . . . . . . . 8  |-  ( ph  ->  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( ( m  e.  S  |->  ( F  oF  -  m
) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m ) ) ) )  =  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  (  _I  |`  S ) ) )
149145, 148syl5eq 2473 . . . . . . 7  |-  ( ph  ->  ( ( ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  oF  -  m
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) )  =  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  (  _I  |`  S ) ) )
150 eqidd 2421 . . . . . . . . 9  |-  ( ph  ->  ( m  e.  S  |->  ( F  oF  -  m ) )  =  ( m  e.  S  |->  ( F  oF  -  m )
) )
151 eqidd 2421 . . . . . . . . 9  |-  ( ph  ->  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  =  ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )
152 breq2 4421 . . . . . . . . . . . 12  |-  ( n  =  ( F  oF  -  m )  ->  ( x  oR  <_  n  <->  x  oR  <_  ( F  oF  -  m )
) )
153152rabbidv 3070 . . . . . . . . . . 11  |-  ( n  =  ( F  oF  -  m )  ->  { x  e.  D  |  x  oR 
<_  n }  =  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) } )
154 ovex 6324 . . . . . . . . . . . . 13  |-  ( n  oF  -  j
)  e.  _V
155 psrass1lem.y . . . . . . . . . . . . 13  |-  ( k  =  ( n  oF  -  j )  ->  X  =  Y )
156154, 155csbie 3418 . . . . . . . . . . . 12  |-  [_ (
n  oF  -  j )  /  k ]_ X  =  Y
157 oveq1 6303 . . . . . . . . . . . . 13  |-  ( n  =  ( F  oF  -  m )  ->  ( n  oF  -  j )  =  ( ( F  oF  -  m )  oF  -  j
) )
158157csbeq1d 3399 . . . . . . . . . . . 12  |-  ( n  =  ( F  oF  -  m )  ->  [_ ( n  oF  -  j )  /  k ]_ X  =  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X )
159156, 158syl5eqr 2475 . . . . . . . . . . 11  |-  ( n  =  ( F  oF  -  m )  ->  Y  =  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)
160153, 159mpteq12dv 4495 . . . . . . . . . 10  |-  ( n  =  ( F  oF  -  m )  ->  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y )  =  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )
161160oveq2d 6312 . . . . . . . . 9  |-  ( n  =  ( F  oF  -  m )  ->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) )  =  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )
16291, 150, 151, 161fmptco 6062 . . . . . . . 8  |-  ( ph  ->  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  oF  -  m )
) )  =  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) )
163162coeq1d 5007 . . . . . . 7  |-  ( ph  ->  ( ( ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  oF  -  m
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) )  =  ( ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) ) )
164 coires1 5364 . . . . . . . . 9  |-  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  (  _I  |`  S ) )  =  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  |`  S )
165 ssid 3480 . . . . . . . . . 10  |-  S  C_  S
166 resmpt 5165 . . . . . . . . . 10  |-  ( S 
C_  S  ->  (
( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  |`  S )  =  ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )
167165, 166ax-mp 5 . . . . . . . . 9  |-  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  |`  S )  =  ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )
168164, 167eqtri 2449 . . . . . . . 8  |-  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  (  _I  |`  S ) )  =  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )
169168a1i 11 . . . . . . 7  |-  ( ph  ->  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  (  _I  |`  S ) )  =  ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )
170149, 163, 1693eqtr3d 2469 . . . . . 6  |-  ( ph  ->  ( ( m  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) )  =  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )
171170feq1d 5723 . . . . 5  |-  ( ph  ->  ( ( ( m  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) ) : S --> B 
<->  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) : S --> B ) )
172144, 171mpbid 213 . . . 4  |-  ( ph  ->  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) : S --> B )
173 rabexg 4566 . . . . . . . 8  |-  ( D  e.  _V  ->  { y  e.  D  |  y  oR  <_  F }  e.  _V )
174120, 173mp1i 13 . . . . . . 7  |-  ( ph  ->  { y  e.  D  |  y  oR 
<_  F }  e.  _V )
1752, 174syl5eqel 2512 . . . . . 6  |-  ( ph  ->  S  e.  _V )
176 mptexg 6141 . . . . . 6  |-  ( S  e.  _V  ->  (
n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  e.  _V )
177175, 176syl 17 . . . . 5  |-  ( ph  ->  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  e.  _V )
178 funmpt 5628 . . . . . 6  |-  Fun  (
n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )
179178a1i 11 . . . . 5  |-  ( ph  ->  Fun  ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )
180127a1i 11 . . . . 5  |-  ( ph  ->  ( 0g `  G
)  e.  _V )
181 suppssdm 6929 . . . . . . 7  |-  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) supp  ( 0g `  G ) )  C_  dom  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )
182 eqid 2420 . . . . . . . 8  |-  ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  =  ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )
183182dmmptss 5342 . . . . . . 7  |-  dom  (
n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  C_  S
184181, 183sstri 3470 . . . . . 6  |-  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) supp  ( 0g `  G ) )  C_  S
185184a1i 11 . . . . 5  |-  ( ph  ->  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) supp  ( 0g `  G
) )  C_  S
)
186 suppssfifsupp 7895 . . . . 5  |-  ( ( ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  e.  _V  /\  Fun  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  /\  ( 0g
`  G )  e. 
_V )  /\  ( S  e.  Fin  /\  (
( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) supp  ( 0g `  G ) )  C_  S ) )  -> 
( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) finSupp  ( 0g `  G ) )
187177, 179, 180, 86, 185, 186syl32anc 1272 . . . 4  |-  ( ph  ->  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) finSupp  ( 0g `  G ) )
1885, 83, 6, 86, 172, 187, 139gsumf1o 17478 . . 3  |-  ( ph  ->  ( G  gsumg  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )  =  ( G  gsumg  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  oF  -  m )
) ) ) )
189162oveq2d 6312 . . 3  |-  ( ph  ->  ( G  gsumg  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  oF  -  m )
) ) )  =  ( G  gsumg  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) ) )
190188, 189eqtrd 2461 . 2  |-  ( ph  ->  ( G  gsumg  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )  =  ( G  gsumg  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) ) )
1916adantr 466 . . . . . 6  |-  ( (
ph  /\  j  e.  S )  ->  G  e. CMnd )
192120a1i 11 . . . . . . . 8  |-  ( (
ph  /\  j  e.  S )  ->  D  e.  _V )
193 rabexg 4566 . . . . . . . 8  |-  ( D  e.  _V  ->  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  e.  _V )
194 mptexg 6141 . . . . . . . 8  |-  ( { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  e.  _V  ->  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  e.  _V )
195192, 193, 1943syl 18 . . . . . . 7  |-  ( (
ph  /\  j  e.  S )  ->  (
k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  e.  _V )
196 funmpt 5628 . . . . . . . 8  |-  Fun  (
k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )
197196a1i 11 . . . . . . 7  |-  ( (
ph  /\  j  e.  S )  ->  Fun  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) )
198127a1i 11 . . . . . . 7  |-  ( (
ph  /\  j  e.  S )  ->  ( 0g `  G )  e. 
_V )
199 suppssdm 6929 . . . . . . . . 9  |-  ( ( k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) supp  ( 0g `  G
) )  C_  dom  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )
20010dmmptss 5342 . . . . . . . . 9  |-  dom  (
k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) 
C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }
201199, 200sstri 3470 . . . . . . . 8  |-  ( ( k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) supp  ( 0g `  G
) )  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }
202201a1i 11 . . . . . . 7  |-  ( (
ph  /\  j  e.  S )  ->  (
( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) supp  ( 0g `  G
) )  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
203 suppssfifsupp 7895 . . . . . . 7  |-  ( ( ( ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )  e.  _V  /\ 
Fun  ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )  /\  ( 0g `  G )  e. 
_V )  /\  ( { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) }  e.  Fin  /\  (
( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) supp  ( 0g `  G
) )  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } ) )  ->  ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X ) finSupp  ( 0g
`  G ) )
204195, 197, 198, 105, 202, 203syl32anc 1272 . . . . . 6  |-  ( (
ph  /\  j  e.  S )  ->  (
k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) finSupp 
( 0g `  G
) )
2055, 83, 191, 105, 11, 204, 22gsumf1o 17478 . . . . 5  |-  ( (
ph  /\  j  e.  S )  ->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) )  =  ( G 
gsumg  ( ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )  o.  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) ) ) )
20673oveq2d 6312 . . . . 5  |-  ( (
ph  /\  j  e.  S )  ->  ( G  gsumg  ( ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )  o.  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) ) )  =  ( G  gsumg  ( m  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )
207205, 206eqtrd 2461 . . . 4  |-  ( (
ph  /\  j  e.  S )  ->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) )  =  ( G 
gsumg  ( m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )
208207mpteq2dva 4503 . . 3  |-  ( ph  ->  ( j  e.  S  |->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) ) )  =  ( j  e.  S  |->  ( G  gsumg  ( m  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) )
209208oveq2d 6312 . 2  |-  ( ph  ->  ( G  gsumg  ( j  e.  S  |->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) ) ) )  =  ( G  gsumg  ( j  e.  S  |->  ( G  gsumg  ( m  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) ) )
210114, 190, 2093eqtr4d 2471 1  |-  ( ph  ->  ( G  gsumg  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )  =  ( G  gsumg  ( j  e.  S  |->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1867   A.wral 2773   {crab 2777   _Vcvv 3078   [_csb 3392    C_ wss 3433   class class class wbr 4417    |-> cmpt 4475    _I cid 4755    X. cxp 4843   `'ccnv 4844   dom cdm 4845    |` cres 4847   "cima 4848    o. ccom 4849   Fun wfun 5586   -->wf 5588   -1-1-onto->wf1o 5591   ` cfv 5592  (class class class)co 6296    |-> cmpt2 6298    oFcof 6534    oRcofr 6535   supp csupp 6916    ^m cmap 7471   Fincfn 7568   finSupp cfsupp 7880   CCcc 9526    <_ cle 9665    - cmin 9849   NNcn 10598   NN0cn0 10858   Basecbs 15073   0gc0g 15290    gsumg cgsu 15291  CMndccmn 17358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-inf2 8137  ax-cnex 9584  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-int 4250  df-iun 4295  df-iin 4296  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-se 4805  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-isom 5601  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6536  df-ofr 6537  df-om 6698  df-1st 6798  df-2nd 6799  df-supp 6917  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-1o 7181  df-2o 7182  df-oadd 7185  df-er 7362  df-map 7473  df-pm 7474  df-ixp 7522  df-en 7569  df-dom 7570  df-sdom 7571  df-fin 7572  df-fsupp 7881  df-oi 8016  df-card 8363  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-nn 10599  df-2 10657  df-n0 10859  df-z 10927  df-uz 11149  df-fz 11772  df-fzo 11903  df-seq 12200  df-hash 12502  df-ndx 15076  df-slot 15077  df-base 15078  df-sets 15079  df-ress 15080  df-plusg 15155  df-0g 15292  df-gsum 15293  df-mre 15436  df-mrc 15437  df-acs 15439  df-mgm 16432  df-sgrp 16471  df-mnd 16481  df-submnd 16527  df-mulg 16620  df-cntz 16915  df-cmn 17360
This theorem is referenced by:  psrass1  18557
  Copyright terms: Public domain W3C validator