MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass1lem Structured version   Visualization version   Unicode version

Theorem psrass1lem 18678
Description: A group sum commutation used by psrass1 18706. (Contributed by Mario Carneiro, 5-Jan-2015.)
Hypotheses
Ref Expression
psrbag.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
psrbagconf1o.1  |-  S  =  { y  e.  D  |  y  oR 
<_  F }
gsumbagdiag.i  |-  ( ph  ->  I  e.  V )
gsumbagdiag.f  |-  ( ph  ->  F  e.  D )
gsumbagdiag.b  |-  B  =  ( Base `  G
)
gsumbagdiag.g  |-  ( ph  ->  G  e. CMnd )
gsumbagdiag.x  |-  ( (
ph  /\  ( j  e.  S  /\  k  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  X  e.  B )
psrass1lem.y  |-  ( k  =  ( n  oF  -  j )  ->  X  =  Y )
Assertion
Ref Expression
psrass1lem  |-  ( ph  ->  ( G  gsumg  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )  =  ( G  gsumg  ( j  e.  S  |->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) ) ) ) )
Distinct variable groups:    f, j,
k, n, x, y, F    f, G, j, k, n, x, y   
n, V, x, y   
f, I, n, x, y    ph, j, k    S, j, k, n, x    B, j, k    D, j, k, n, x, y    f, X, n, x, y    f, Y, k, x, y
Allowed substitution hints:    ph( x, y, f, n)    B( x, y, f, n)    D( f)    S( y, f)    I( j, k)    V( f, j, k)    X( j, k)    Y( j, n)

Proof of Theorem psrass1lem
Dummy variables  m  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbag.d . . . 4  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
2 psrbagconf1o.1 . . . 4  |-  S  =  { y  e.  D  |  y  oR 
<_  F }
3 gsumbagdiag.i . . . 4  |-  ( ph  ->  I  e.  V )
4 gsumbagdiag.f . . . 4  |-  ( ph  ->  F  e.  D )
5 gsumbagdiag.b . . . 4  |-  B  =  ( Base `  G
)
6 gsumbagdiag.g . . . 4  |-  ( ph  ->  G  e. CMnd )
71, 2, 3, 4gsumbagdiaglem 18676 . . . . 5  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } ) )  ->  (
j  e.  S  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } ) )
8 gsumbagdiag.x . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  S  /\  k  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  X  e.  B )
98anassrs 660 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  S )  /\  k  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  X  e.  B )
10 eqid 2471 . . . . . . . . . . 11  |-  ( k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  =  ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )
119, 10fmptd 6061 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  S )  ->  (
k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B )
123adantr 472 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  S )  ->  I  e.  V )
13 ssrab2 3500 . . . . . . . . . . . . . 14  |-  { y  e.  D  |  y  oR  <_  F }  C_  D
142, 13eqsstri 3448 . . . . . . . . . . . . 13  |-  S  C_  D
154adantr 472 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  S )  ->  F  e.  D )
16 simpr 468 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  S )  ->  j  e.  S )
171, 2psrbagconcl 18674 . . . . . . . . . . . . . 14  |-  ( ( I  e.  V  /\  F  e.  D  /\  j  e.  S )  ->  ( F  oF  -  j )  e.  S )
1812, 15, 16, 17syl3anc 1292 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  S )  ->  ( F  oF  -  j
)  e.  S )
1914, 18sseldi 3416 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  S )  ->  ( F  oF  -  j
)  e.  D )
20 eqid 2471 . . . . . . . . . . . . 13  |-  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  =  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }
211, 20psrbagconf1o 18675 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  ( F  oF  -  j )  e.  D )  ->  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } -1-1-onto-> { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )
2212, 19, 21syl2anc 673 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  S )  ->  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } -1-1-onto-> { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )
23 f1of 5828 . . . . . . . . . . 11  |-  ( ( m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } -1-1-onto-> { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) }  ->  ( m  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  ( ( F  oF  -  j )  oF  -  m
) ) : {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
2422, 23syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  S )  ->  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
25 fco 5751 . . . . . . . . . 10  |-  ( ( ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B  /\  ( m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  -> 
( ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )  o.  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B )
2611, 24, 25syl2anc 673 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  S )  ->  (
( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  o.  ( m  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  ( ( F  oF  -  j )  oF  -  m
) ) ) : { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } --> B )
2712adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  I  e.  V )
2815adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  F  e.  D )
291psrbagf 18666 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  F  e.  D )  ->  F : I --> NN0 )
3027, 28, 29syl2anc 673 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  F :
I --> NN0 )
3130ffvelrnda 6037 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  z  e.  I )  ->  ( F `  z
)  e.  NN0 )
3216adantr 472 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  j  e.  S )
3314, 32sseldi 3416 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  j  e.  D )
341psrbagf 18666 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  j  e.  D )  ->  j : I --> NN0 )
3527, 33, 34syl2anc 673 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  j :
I --> NN0 )
3635ffvelrnda 6037 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  z  e.  I )  ->  ( j `  z
)  e.  NN0 )
37 ssrab2 3500 . . . . . . . . . . . . . . . . . 18  |-  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  C_  D
38 simpr 468 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
3937, 38sseldi 3416 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  m  e.  D )
401psrbagf 18666 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  V  /\  m  e.  D )  ->  m : I --> NN0 )
4127, 39, 40syl2anc 673 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  m :
I --> NN0 )
4241ffvelrnda 6037 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  z  e.  I )  ->  ( m `  z
)  e.  NN0 )
43 nn0cn 10903 . . . . . . . . . . . . . . . 16  |-  ( ( F `  z )  e.  NN0  ->  ( F `
 z )  e.  CC )
44 nn0cn 10903 . . . . . . . . . . . . . . . 16  |-  ( ( j `  z )  e.  NN0  ->  ( j `
 z )  e.  CC )
45 nn0cn 10903 . . . . . . . . . . . . . . . 16  |-  ( ( m `  z )  e.  NN0  ->  ( m `
 z )  e.  CC )
46 sub32 9928 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  z
)  e.  CC  /\  ( j `  z
)  e.  CC  /\  ( m `  z
)  e.  CC )  ->  ( ( ( F `  z )  -  ( j `  z ) )  -  ( m `  z
) )  =  ( ( ( F `  z )  -  (
m `  z )
)  -  ( j `
 z ) ) )
4743, 44, 45, 46syl3an 1334 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  z
)  e.  NN0  /\  ( j `  z
)  e.  NN0  /\  ( m `  z
)  e.  NN0 )  ->  ( ( ( F `
 z )  -  ( j `  z
) )  -  (
m `  z )
)  =  ( ( ( F `  z
)  -  ( m `
 z ) )  -  ( j `  z ) ) )
4831, 36, 42, 47syl3anc 1292 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  z  e.  I )  ->  ( ( ( F `
 z )  -  ( j `  z
) )  -  (
m `  z )
)  =  ( ( ( F `  z
)  -  ( m `
 z ) )  -  ( j `  z ) ) )
4948mpteq2dva 4482 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( z  e.  I  |->  ( ( ( F `  z
)  -  ( j `
 z ) )  -  ( m `  z ) ) )  =  ( z  e.  I  |->  ( ( ( F `  z )  -  ( m `  z ) )  -  ( j `  z
) ) ) )
50 ovex 6336 . . . . . . . . . . . . . . 15  |-  ( ( F `  z )  -  ( j `  z ) )  e. 
_V
5150a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  z  e.  I )  ->  ( ( F `  z )  -  (
j `  z )
)  e.  _V )
5230feqmptd 5932 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  F  =  ( z  e.  I  |->  ( F `  z
) ) )
5335feqmptd 5932 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  j  =  ( z  e.  I  |->  ( j `  z
) ) )
5427, 31, 36, 52, 53offval2 6567 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( F  oF  -  j
)  =  ( z  e.  I  |->  ( ( F `  z )  -  ( j `  z ) ) ) )
5541feqmptd 5932 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  m  =  ( z  e.  I  |->  ( m `  z
) ) )
5627, 51, 42, 54, 55offval2 6567 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( ( F  oF  -  j
)  oF  -  m )  =  ( z  e.  I  |->  ( ( ( F `  z )  -  (
j `  z )
)  -  ( m `
 z ) ) ) )
57 ovex 6336 . . . . . . . . . . . . . . 15  |-  ( ( F `  z )  -  ( m `  z ) )  e. 
_V
5857a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  z  e.  I )  ->  ( ( F `  z )  -  (
m `  z )
)  e.  _V )
5927, 31, 42, 52, 55offval2 6567 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( F  oF  -  m
)  =  ( z  e.  I  |->  ( ( F `  z )  -  ( m `  z ) ) ) )
6027, 58, 36, 59, 53offval2 6567 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( ( F  oF  -  m
)  oF  -  j )  =  ( z  e.  I  |->  ( ( ( F `  z )  -  (
m `  z )
)  -  ( j `
 z ) ) ) )
6149, 56, 603eqtr4d 2515 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( ( F  oF  -  j
)  oF  -  m )  =  ( ( F  oF  -  m )  oF  -  j ) )
6219adantr 472 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( F  oF  -  j
)  e.  D )
631, 20psrbagconcl 18674 . . . . . . . . . . . . 13  |-  ( ( I  e.  V  /\  ( F  oF  -  j )  e.  D  /\  m  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( ( F  oF  -  j
)  oF  -  m )  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
6427, 62, 38, 63syl3anc 1292 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( ( F  oF  -  j
)  oF  -  m )  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
6561, 64eqeltrrd 2550 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  ( ( F  oF  -  m
)  oF  -  j )  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
6661mpteq2dva 4482 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  S )  ->  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) )  =  ( m  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  ( ( F  oF  -  m )  oF  -  j
) ) )
67 nfcv 2612 . . . . . . . . . . . . 13  |-  F/_ n X
68 nfcsb1v 3365 . . . . . . . . . . . . 13  |-  F/_ k [_ n  /  k ]_ X
69 csbeq1a 3358 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  X  =  [_ n  /  k ]_ X )
7067, 68, 69cbvmpt 4487 . . . . . . . . . . . 12  |-  ( k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  =  ( n  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  [_ n  /  k ]_ X )
7170a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  S )  ->  (
k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  =  ( n  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  [_ n  /  k ]_ X ) )
72 csbeq1 3352 . . . . . . . . . . 11  |-  ( n  =  ( ( F  oF  -  m
)  oF  -  j )  ->  [_ n  /  k ]_ X  =  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X )
7365, 66, 71, 72fmptco 6072 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  S )  ->  (
( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  o.  ( m  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  ( ( F  oF  -  j )  oF  -  m
) ) )  =  ( m  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )
7473feq1d 5724 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  S )  ->  (
( ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )  o.  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) ) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B  <->  ( m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X ) : {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B ) )
7526, 74mpbid 215 . . . . . . . 8  |-  ( (
ph  /\  j  e.  S )  ->  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) : { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B )
76 eqid 2471 . . . . . . . . 9  |-  ( m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)  =  ( m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)
7776fmpt 6058 . . . . . . . 8  |-  ( A. m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X  e.  B  <->  ( m  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X ) : {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } --> B )
7875, 77sylibr 217 . . . . . . 7  |-  ( (
ph  /\  j  e.  S )  ->  A. m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) }
[_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X  e.  B
)
7978r19.21bi 2776 . . . . . 6  |-  ( ( ( ph  /\  j  e.  S )  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } )  ->  [_ ( ( F  oF  -  m )  oF  -  j )  / 
k ]_ X  e.  B
)
8079anasss 659 . . . . 5  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X  e.  B )
817, 80syldan 478 . . . 4  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } ) )  ->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X  e.  B )
821, 2, 3, 4, 5, 6, 81gsumbagdiag 18677 . . 3  |-  ( ph  ->  ( G  gsumg  ( m  e.  S ,  j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )  =  ( G  gsumg  ( j  e.  S ,  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )
83 eqid 2471 . . . 4  |-  ( 0g
`  G )  =  ( 0g `  G
)
841psrbaglefi 18673 . . . . . 6  |-  ( ( I  e.  V  /\  F  e.  D )  ->  { y  e.  D  |  y  oR 
<_  F }  e.  Fin )
853, 4, 84syl2anc 673 . . . . 5  |-  ( ph  ->  { y  e.  D  |  y  oR 
<_  F }  e.  Fin )
862, 85syl5eqel 2553 . . . 4  |-  ( ph  ->  S  e.  Fin )
873adantr 472 . . . . 5  |-  ( (
ph  /\  m  e.  S )  ->  I  e.  V )
884adantr 472 . . . . . . 7  |-  ( (
ph  /\  m  e.  S )  ->  F  e.  D )
89 simpr 468 . . . . . . 7  |-  ( (
ph  /\  m  e.  S )  ->  m  e.  S )
901, 2psrbagconcl 18674 . . . . . . 7  |-  ( ( I  e.  V  /\  F  e.  D  /\  m  e.  S )  ->  ( F  oF  -  m )  e.  S )
9187, 88, 89, 90syl3anc 1292 . . . . . 6  |-  ( (
ph  /\  m  e.  S )  ->  ( F  oF  -  m
)  e.  S )
9214, 91sseldi 3416 . . . . 5  |-  ( (
ph  /\  m  e.  S )  ->  ( F  oF  -  m
)  e.  D )
931psrbaglefi 18673 . . . . 5  |-  ( ( I  e.  V  /\  ( F  oF  -  m )  e.  D
)  ->  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  e.  Fin )
9487, 92, 93syl2anc 673 . . . 4  |-  ( (
ph  /\  m  e.  S )  ->  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  e.  Fin )
95 xpfi 7860 . . . . 5  |-  ( ( S  e.  Fin  /\  S  e.  Fin )  ->  ( S  X.  S
)  e.  Fin )
9686, 86, 95syl2anc 673 . . . 4  |-  ( ph  ->  ( S  X.  S
)  e.  Fin )
97 simprl 772 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } ) )  ->  m  e.  S )
987simpld 466 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } ) )  ->  j  e.  S )
99 brxp 4870 . . . . . . 7  |-  ( m ( S  X.  S
) j  <->  ( m  e.  S  /\  j  e.  S ) )
10097, 98, 99sylanbrc 677 . . . . . 6  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } ) )  ->  m
( S  X.  S
) j )
101100pm2.24d 139 . . . . 5  |-  ( (
ph  /\  ( m  e.  S  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } ) )  ->  ( -.  m ( S  X.  S ) j  ->  [_ ( ( F  oF  -  m )  oF  -  j
)  /  k ]_ X  =  ( 0g `  G ) ) )
102101impr 631 . . . 4  |-  ( (
ph  /\  ( (
m  e.  S  /\  j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) } )  /\  -.  m ( S  X.  S ) j ) )  ->  [_ ( ( F  oF  -  m )  oF  -  j )  / 
k ]_ X  =  ( 0g `  G ) )
1035, 83, 6, 86, 94, 81, 96, 102gsum2d2 17684 . . 3  |-  ( ph  ->  ( G  gsumg  ( m  e.  S ,  j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )  =  ( G  gsumg  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) ) )
1041psrbaglefi 18673 . . . . 5  |-  ( ( I  e.  V  /\  ( F  oF  -  j )  e.  D )  ->  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  e.  Fin )
10512, 19, 104syl2anc 673 . . . 4  |-  ( (
ph  /\  j  e.  S )  ->  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  e.  Fin )
106 simprl 772 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  j  e.  S )
1071, 2, 3, 4gsumbagdiaglem 18676 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  (
m  e.  S  /\  j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) } ) )
108107simpld 466 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  m  e.  S )
109 brxp 4870 . . . . . . 7  |-  ( j ( S  X.  S
) m  <->  ( j  e.  S  /\  m  e.  S ) )
110106, 108, 109sylanbrc 677 . . . . . 6  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  j
( S  X.  S
) m )
111110pm2.24d 139 . . . . 5  |-  ( (
ph  /\  ( j  e.  S  /\  m  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } ) )  ->  ( -.  j ( S  X.  S ) m  ->  [_ ( ( F  oF  -  m )  oF  -  j
)  /  k ]_ X  =  ( 0g `  G ) ) )
112111impr 631 . . . 4  |-  ( (
ph  /\  ( (
j  e.  S  /\  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )  /\  -.  j ( S  X.  S ) m ) )  ->  [_ ( ( F  oF  -  m )  oF  -  j )  / 
k ]_ X  =  ( 0g `  G ) )
1135, 83, 6, 86, 105, 80, 96, 112gsum2d2 17684 . . 3  |-  ( ph  ->  ( G  gsumg  ( j  e.  S ,  m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )  =  ( G  gsumg  ( j  e.  S  |->  ( G  gsumg  ( m  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) ) )
11482, 103, 1133eqtr3d 2513 . 2  |-  ( ph  ->  ( G  gsumg  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) )  =  ( G  gsumg  ( j  e.  S  |->  ( G 
gsumg  ( m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) ) )
1156adantr 472 . . . . . . . 8  |-  ( (
ph  /\  m  e.  S )  ->  G  e. CMnd )
11681anassrs 660 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  S )  /\  j  e.  { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } )  ->  [_ ( ( F  oF  -  m )  oF  -  j )  / 
k ]_ X  e.  B
)
117 eqid 2471 . . . . . . . . 9  |-  ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)  =  ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)
118116, 117fmptd 6061 . . . . . . . 8  |-  ( (
ph  /\  m  e.  S )  ->  (
j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) : { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) } --> B )
119 ovex 6336 . . . . . . . . . . . 12  |-  ( NN0 
^m  I )  e. 
_V
1201, 119rabex2 4552 . . . . . . . . . . 11  |-  D  e. 
_V
121120a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  S )  ->  D  e.  _V )
122 rabexg 4549 . . . . . . . . . 10  |-  ( D  e.  _V  ->  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  e.  _V )
123 mptexg 6151 . . . . . . . . . 10  |-  ( { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  e.  _V  ->  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)  e.  _V )
124121, 122, 1233syl 18 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  S )  ->  (
j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)  e.  _V )
125 funmpt 5625 . . . . . . . . . 10  |-  Fun  (
j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)
126125a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  S )  ->  Fun  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )
127 fvex 5889 . . . . . . . . . 10  |-  ( 0g
`  G )  e. 
_V
128127a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  S )  ->  ( 0g `  G )  e. 
_V )
129 suppssdm 6946 . . . . . . . . . . 11  |-  ( ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) supp  ( 0g `  G ) )  C_  dom  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)
130117dmmptss 5338 . . . . . . . . . . 11  |-  dom  (
j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }
131129, 130sstri 3427 . . . . . . . . . 10  |-  ( ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) supp  ( 0g `  G ) )  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }
132131a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  S )  ->  (
( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) supp  ( 0g `  G ) )  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) } )
133 suppssfifsupp 7916 . . . . . . . . 9  |-  ( ( ( ( j  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } 
|->  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X )  e.  _V  /\ 
Fun  ( j  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } 
|->  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X )  /\  ( 0g `  G )  e. 
_V )  /\  ( { x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) }  e.  Fin  /\  (
( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) supp  ( 0g `  G ) )  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) } ) )  ->  ( j  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  m ) } 
|->  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X ) finSupp  ( 0g
`  G ) )
134124, 126, 128, 94, 132, 133syl32anc 1300 . . . . . . . 8  |-  ( (
ph  /\  m  e.  S )  ->  (
j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) finSupp  ( 0g `  G
) )
1355, 83, 115, 94, 118, 134gsumcl 17627 . . . . . . 7  |-  ( (
ph  /\  m  e.  S )  ->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )  e.  B
)
136 eqid 2471 . . . . . . 7  |-  ( m  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )  =  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )
137135, 136fmptd 6061 . . . . . 6  |-  ( ph  ->  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) : S --> B )
1381, 2psrbagconf1o 18675 . . . . . . . 8  |-  ( ( I  e.  V  /\  F  e.  D )  ->  ( m  e.  S  |->  ( F  oF  -  m ) ) : S -1-1-onto-> S )
1393, 4, 138syl2anc 673 . . . . . . 7  |-  ( ph  ->  ( m  e.  S  |->  ( F  oF  -  m ) ) : S -1-1-onto-> S )
140 f1ocnv 5840 . . . . . . 7  |-  ( ( m  e.  S  |->  ( F  oF  -  m ) ) : S -1-1-onto-> S  ->  `' (
m  e.  S  |->  ( F  oF  -  m ) ) : S -1-1-onto-> S )
141 f1of 5828 . . . . . . 7  |-  ( `' ( m  e.  S  |->  ( F  oF  -  m ) ) : S -1-1-onto-> S  ->  `' (
m  e.  S  |->  ( F  oF  -  m ) ) : S --> S )
142139, 140, 1413syl 18 . . . . . 6  |-  ( ph  ->  `' ( m  e.  S  |->  ( F  oF  -  m )
) : S --> S )
143 fco 5751 . . . . . 6  |-  ( ( ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) : S --> B  /\  `' ( m  e.  S  |->  ( F  oF  -  m ) ) : S --> S )  ->  ( ( m  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) ) : S --> B )
144137, 142, 143syl2anc 673 . . . . 5  |-  ( ph  ->  ( ( m  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) ) : S --> B )
145 coass 5361 . . . . . . . 8  |-  ( ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  oF  -  m
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) )  =  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( ( m  e.  S  |->  ( F  oF  -  m ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) ) )
146 f1ococnv2 5854 . . . . . . . . . 10  |-  ( ( m  e.  S  |->  ( F  oF  -  m ) ) : S -1-1-onto-> S  ->  ( (
m  e.  S  |->  ( F  oF  -  m ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) )  =  (  _I  |`  S )
)
147139, 146syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( m  e.  S  |->  ( F  oF  -  m )
)  o.  `' ( m  e.  S  |->  ( F  oF  -  m ) ) )  =  (  _I  |`  S ) )
148147coeq2d 5002 . . . . . . . 8  |-  ( ph  ->  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( ( m  e.  S  |->  ( F  oF  -  m
) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m ) ) ) )  =  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  (  _I  |`  S ) ) )
149145, 148syl5eq 2517 . . . . . . 7  |-  ( ph  ->  ( ( ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  oF  -  m
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) )  =  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  (  _I  |`  S ) ) )
150 eqidd 2472 . . . . . . . . 9  |-  ( ph  ->  ( m  e.  S  |->  ( F  oF  -  m ) )  =  ( m  e.  S  |->  ( F  oF  -  m )
) )
151 eqidd 2472 . . . . . . . . 9  |-  ( ph  ->  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  =  ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )
152 breq2 4399 . . . . . . . . . . . 12  |-  ( n  =  ( F  oF  -  m )  ->  ( x  oR  <_  n  <->  x  oR  <_  ( F  oF  -  m )
) )
153152rabbidv 3022 . . . . . . . . . . 11  |-  ( n  =  ( F  oF  -  m )  ->  { x  e.  D  |  x  oR 
<_  n }  =  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) } )
154 ovex 6336 . . . . . . . . . . . . 13  |-  ( n  oF  -  j
)  e.  _V
155 psrass1lem.y . . . . . . . . . . . . 13  |-  ( k  =  ( n  oF  -  j )  ->  X  =  Y )
156154, 155csbie 3375 . . . . . . . . . . . 12  |-  [_ (
n  oF  -  j )  /  k ]_ X  =  Y
157 oveq1 6315 . . . . . . . . . . . . 13  |-  ( n  =  ( F  oF  -  m )  ->  ( n  oF  -  j )  =  ( ( F  oF  -  m )  oF  -  j
) )
158157csbeq1d 3356 . . . . . . . . . . . 12  |-  ( n  =  ( F  oF  -  m )  ->  [_ ( n  oF  -  j )  /  k ]_ X  =  [_ ( ( F  oF  -  m
)  oF  -  j )  /  k ]_ X )
159156, 158syl5eqr 2519 . . . . . . . . . . 11  |-  ( n  =  ( F  oF  -  m )  ->  Y  =  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
)
160153, 159mpteq12dv 4474 . . . . . . . . . 10  |-  ( n  =  ( F  oF  -  m )  ->  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y )  =  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) )
161160oveq2d 6324 . . . . . . . . 9  |-  ( n  =  ( F  oF  -  m )  ->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) )  =  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )
16291, 150, 151, 161fmptco 6072 . . . . . . . 8  |-  ( ph  ->  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  oF  -  m )
) )  =  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) )
163162coeq1d 5001 . . . . . . 7  |-  ( ph  ->  ( ( ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  oF  -  m
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) )  =  ( ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) ) )
164 coires1 5360 . . . . . . . . 9  |-  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  (  _I  |`  S ) )  =  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  |`  S )
165 ssid 3437 . . . . . . . . . 10  |-  S  C_  S
166 resmpt 5160 . . . . . . . . . 10  |-  ( S 
C_  S  ->  (
( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  |`  S )  =  ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )
167165, 166ax-mp 5 . . . . . . . . 9  |-  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  |`  S )  =  ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )
168164, 167eqtri 2493 . . . . . . . 8  |-  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  (  _I  |`  S ) )  =  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )
169168a1i 11 . . . . . . 7  |-  ( ph  ->  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  (  _I  |`  S ) )  =  ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )
170149, 163, 1693eqtr3d 2513 . . . . . 6  |-  ( ph  ->  ( ( m  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) )  =  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )
171170feq1d 5724 . . . . 5  |-  ( ph  ->  ( ( ( m  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )  o.  `' ( m  e.  S  |->  ( F  oF  -  m )
) ) : S --> B 
<->  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) : S --> B ) )
172144, 171mpbid 215 . . . 4  |-  ( ph  ->  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) : S --> B )
173 rabexg 4549 . . . . . . . 8  |-  ( D  e.  _V  ->  { y  e.  D  |  y  oR  <_  F }  e.  _V )
174120, 173mp1i 13 . . . . . . 7  |-  ( ph  ->  { y  e.  D  |  y  oR 
<_  F }  e.  _V )
1752, 174syl5eqel 2553 . . . . . 6  |-  ( ph  ->  S  e.  _V )
176 mptexg 6151 . . . . . 6  |-  ( S  e.  _V  ->  (
n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  e.  _V )
177175, 176syl 17 . . . . 5  |-  ( ph  ->  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  e.  _V )
178 funmpt 5625 . . . . . 6  |-  Fun  (
n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )
179178a1i 11 . . . . 5  |-  ( ph  ->  Fun  ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )
180127a1i 11 . . . . 5  |-  ( ph  ->  ( 0g `  G
)  e.  _V )
181 suppssdm 6946 . . . . . . 7  |-  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) supp  ( 0g `  G ) )  C_  dom  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )
182 eqid 2471 . . . . . . . 8  |-  ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  =  ( n  e.  S  |->  ( G 
gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )
183182dmmptss 5338 . . . . . . 7  |-  dom  (
n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  C_  S
184181, 183sstri 3427 . . . . . 6  |-  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) supp  ( 0g `  G ) )  C_  S
185184a1i 11 . . . . 5  |-  ( ph  ->  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) supp  ( 0g `  G
) )  C_  S
)
186 suppssfifsupp 7916 . . . . 5  |-  ( ( ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  e.  _V  /\  Fun  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  /\  ( 0g
`  G )  e. 
_V )  /\  ( S  e.  Fin  /\  (
( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) supp  ( 0g `  G ) )  C_  S ) )  -> 
( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) finSupp  ( 0g `  G ) )
187177, 179, 180, 86, 185, 186syl32anc 1300 . . . 4  |-  ( ph  ->  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) finSupp  ( 0g `  G ) )
1885, 83, 6, 86, 172, 187, 139gsumf1o 17628 . . 3  |-  ( ph  ->  ( G  gsumg  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )  =  ( G  gsumg  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  oF  -  m )
) ) ) )
189162oveq2d 6324 . . 3  |-  ( ph  ->  ( G  gsumg  ( ( n  e.  S  |->  ( G  gsumg  ( j  e.  { x  e.  D  |  x  oR  <_  n }  |->  Y ) ) )  o.  ( m  e.  S  |->  ( F  oF  -  m )
) ) )  =  ( G  gsumg  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) ) )
190188, 189eqtrd 2505 . 2  |-  ( ph  ->  ( G  gsumg  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )  =  ( G  gsumg  ( m  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  m
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) ) )
1916adantr 472 . . . . . 6  |-  ( (
ph  /\  j  e.  S )  ->  G  e. CMnd )
192120a1i 11 . . . . . . . 8  |-  ( (
ph  /\  j  e.  S )  ->  D  e.  _V )
193 rabexg 4549 . . . . . . . 8  |-  ( D  e.  _V  ->  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  e.  _V )
194 mptexg 6151 . . . . . . . 8  |-  ( { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  e.  _V  ->  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  e.  _V )
195192, 193, 1943syl 18 . . . . . . 7  |-  ( (
ph  /\  j  e.  S )  ->  (
k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )  e.  _V )
196 funmpt 5625 . . . . . . . 8  |-  Fun  (
k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )
197196a1i 11 . . . . . . 7  |-  ( (
ph  /\  j  e.  S )  ->  Fun  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) )
198127a1i 11 . . . . . . 7  |-  ( (
ph  /\  j  e.  S )  ->  ( 0g `  G )  e. 
_V )
199 suppssdm 6946 . . . . . . . . 9  |-  ( ( k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) supp  ( 0g `  G
) )  C_  dom  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X )
20010dmmptss 5338 . . . . . . . . 9  |-  dom  (
k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) 
C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }
201199, 200sstri 3427 . . . . . . . 8  |-  ( ( k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) supp  ( 0g `  G
) )  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }
202201a1i 11 . . . . . . 7  |-  ( (
ph  /\  j  e.  S )  ->  (
( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) supp  ( 0g `  G
) )  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } )
203 suppssfifsupp 7916 . . . . . . 7  |-  ( ( ( ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )  e.  _V  /\ 
Fun  ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )  /\  ( 0g `  G )  e. 
_V )  /\  ( { x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) }  e.  Fin  /\  (
( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) supp  ( 0g `  G
) )  C_  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) } ) )  ->  ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X ) finSupp  ( 0g
`  G ) )
204195, 197, 198, 105, 202, 203syl32anc 1300 . . . . . 6  |-  ( (
ph  /\  j  e.  S )  ->  (
k  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) finSupp 
( 0g `  G
) )
2055, 83, 191, 105, 11, 204, 22gsumf1o 17628 . . . . 5  |-  ( (
ph  /\  j  e.  S )  ->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) )  =  ( G 
gsumg  ( ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )  o.  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) ) ) )
20673oveq2d 6324 . . . . 5  |-  ( (
ph  /\  j  e.  S )  ->  ( G  gsumg  ( ( k  e. 
{ x  e.  D  |  x  oR 
<_  ( F  oF  -  j ) } 
|->  X )  o.  (
m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  ( ( F  oF  -  j )  oF  -  m ) ) ) )  =  ( G  gsumg  ( m  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )
207205, 206eqtrd 2505 . . . 4  |-  ( (
ph  /\  j  e.  S )  ->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) )  =  ( G 
gsumg  ( m  e.  { x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) )
208207mpteq2dva 4482 . . 3  |-  ( ph  ->  ( j  e.  S  |->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) ) )  =  ( j  e.  S  |->  ( G  gsumg  ( m  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) )
209208oveq2d 6324 . 2  |-  ( ph  ->  ( G  gsumg  ( j  e.  S  |->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) ) ) )  =  ( G  gsumg  ( j  e.  S  |->  ( G  gsumg  ( m  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  [_ (
( F  oF  -  m )  oF  -  j )  /  k ]_ X
) ) ) ) )
210114, 190, 2093eqtr4d 2515 1  |-  ( ph  ->  ( G  gsumg  ( n  e.  S  |->  ( G  gsumg  ( j  e.  {
x  e.  D  |  x  oR  <_  n }  |->  Y ) ) ) )  =  ( G  gsumg  ( j  e.  S  |->  ( G  gsumg  ( k  e.  {
x  e.  D  |  x  oR  <_  ( F  oF  -  j
) }  |->  X ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   {crab 2760   _Vcvv 3031   [_csb 3349    C_ wss 3390   class class class wbr 4395    |-> cmpt 4454    _I cid 4749    X. cxp 4837   `'ccnv 4838   dom cdm 4839    |` cres 4841   "cima 4842    o. ccom 4843   Fun wfun 5583   -->wf 5585   -1-1-onto->wf1o 5588   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310    oFcof 6548    oRcofr 6549   supp csupp 6933    ^m cmap 7490   Fincfn 7587   finSupp cfsupp 7901   CCcc 9555    <_ cle 9694    - cmin 9880   NNcn 10631   NN0cn0 10893   Basecbs 15199   0gc0g 15416    gsumg cgsu 15417  CMndccmn 17508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-ofr 6551  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-oi 8043  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-fzo 11943  df-seq 12252  df-hash 12554  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-0g 15418  df-gsum 15419  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510
This theorem is referenced by:  psrass1  18706
  Copyright terms: Public domain W3C validator