MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psr1baslem Structured version   Unicode version

Theorem psr1baslem 17775
Description: The set of finite bags on  1o is just the set of all functions from  1o to  NN0. (Contributed by Mario Carneiro, 9-Feb-2015.)
Assertion
Ref Expression
psr1baslem  |-  ( NN0 
^m  1o )  =  { f  e.  ( NN0  ^m  1o )  |  ( `' f
" NN )  e. 
Fin }

Proof of Theorem psr1baslem
StepHypRef Expression
1 rabid2 3004 . 2  |-  ( ( NN0  ^m  1o )  =  { f  e.  ( NN0  ^m  1o )  |  ( `' f " NN )  e. 
Fin }  <->  A. f  e.  ( NN0  ^m  1o ) ( `' f " NN )  e.  Fin )
2 df1o2 7045 . . . 4  |-  1o  =  { (/) }
3 snfi 7503 . . . 4  |-  { (/) }  e.  Fin
42, 3eqeltri 2538 . . 3  |-  1o  e.  Fin
5 cnvimass 5300 . . . 4  |-  ( `' f " NN ) 
C_  dom  f
6 elmapi 7347 . . . . 5  |-  ( f  e.  ( NN0  ^m  1o )  ->  f : 1o --> NN0 )
7 fdm 5674 . . . . 5  |-  ( f : 1o --> NN0  ->  dom  f  =  1o )
86, 7syl 16 . . . 4  |-  ( f  e.  ( NN0  ^m  1o )  ->  dom  f  =  1o )
95, 8syl5sseq 3515 . . 3  |-  ( f  e.  ( NN0  ^m  1o )  ->  ( `' f " NN ) 
C_  1o )
10 ssfi 7647 . . 3  |-  ( ( 1o  e.  Fin  /\  ( `' f " NN )  C_  1o )  -> 
( `' f " NN )  e.  Fin )
114, 9, 10sylancr 663 . 2  |-  ( f  e.  ( NN0  ^m  1o )  ->  ( `' f " NN )  e.  Fin )
121, 11mprgbir 2904 1  |-  ( NN0 
^m  1o )  =  { f  e.  ( NN0  ^m  1o )  |  ( `' f
" NN )  e. 
Fin }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1370    e. wcel 1758   {crab 2803    C_ wss 3439   (/)c0 3748   {csn 3988   `'ccnv 4950   dom cdm 4951   "cima 4954   -->wf 5525  (class class class)co 6203   1oc1o 7026    ^m cmap 7327   Fincfn 7423   NNcn 10437   NN0cn0 10694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-1o 7033  df-er 7214  df-map 7329  df-en 7424  df-fin 7427
This theorem is referenced by:  psr1bas  17781  ply1basf  17792  ply1plusgfvi  17830  coe1z  17850  coe1mul2  17856  coe1tm  17860  ply1coe  17881  ply1coeOLD  17882  deg1ldg  21706  deg1leb  21709  deg1val  21710  deg1valOLD  21711
  Copyright terms: Public domain W3C validator