MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnunilem5 Structured version   Unicode version

Theorem psgnunilem5 17122
Description: Lemma for psgnuni 17127. It is impossible to shift a transposition off the end because if the active transposition is at the right end, it is the only transposition moving  A in contradiction to this being a representation of the identity. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
psgnunilem2.g  |-  G  =  ( SymGrp `  D )
psgnunilem2.t  |-  T  =  ran  (pmTrsp `  D
)
psgnunilem2.d  |-  ( ph  ->  D  e.  V )
psgnunilem2.w  |-  ( ph  ->  W  e. Word  T )
psgnunilem2.id  |-  ( ph  ->  ( G  gsumg  W )  =  (  _I  |`  D )
)
psgnunilem2.l  |-  ( ph  ->  ( # `  W
)  =  L )
psgnunilem2.ix  |-  ( ph  ->  I  e.  ( 0..^ L ) )
psgnunilem2.a  |-  ( ph  ->  A  e.  dom  (
( W `  I
)  \  _I  )
)
psgnunilem2.al  |-  ( ph  ->  A. k  e.  ( 0..^ I )  -.  A  e.  dom  (
( W `  k
)  \  _I  )
)
Assertion
Ref Expression
psgnunilem5  |-  ( ph  ->  ( I  +  1 )  e.  ( 0..^ L ) )
Distinct variable groups:    A, k    k, G    k, I    k, W
Allowed substitution hints:    ph( k)    D( k)    T( k)    L( k)    V( k)

Proof of Theorem psgnunilem5
Dummy variables  j 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3765 . . . 4  |-  -.  A  e.  (/)
2 psgnunilem2.id . . . . . . . 8  |-  ( ph  ->  ( G  gsumg  W )  =  (  _I  |`  D )
)
32difeq1d 3582 . . . . . . 7  |-  ( ph  ->  ( ( G  gsumg  W ) 
\  _I  )  =  ( (  _I  |`  D ) 
\  _I  ) )
43dmeqd 5052 . . . . . 6  |-  ( ph  ->  dom  ( ( G 
gsumg  W )  \  _I  )  =  dom  ( (  _I  |`  D )  \  _I  ) )
5 resss 5143 . . . . . . . . 9  |-  (  _I  |`  D )  C_  _I
6 ssdif0 3851 . . . . . . . . 9  |-  ( (  _I  |`  D )  C_  _I  <->  ( (  _I  |`  D )  \  _I  )  =  (/) )
75, 6mpbi 211 . . . . . . . 8  |-  ( (  _I  |`  D )  \  _I  )  =  (/)
87dmeqi 5051 . . . . . . 7  |-  dom  (
(  _I  |`  D ) 
\  _I  )  =  dom  (/)
9 dm0 5063 . . . . . . 7  |-  dom  (/)  =  (/)
108, 9eqtri 2451 . . . . . 6  |-  dom  (
(  _I  |`  D ) 
\  _I  )  =  (/)
114, 10syl6eq 2479 . . . . 5  |-  ( ph  ->  dom  ( ( G 
gsumg  W )  \  _I  )  =  (/) )
1211eleq2d 2492 . . . 4  |-  ( ph  ->  ( A  e.  dom  ( ( G  gsumg  W ) 
\  _I  )  <->  A  e.  (/) ) )
131, 12mtbiri 304 . . 3  |-  ( ph  ->  -.  A  e.  dom  ( ( G  gsumg  W ) 
\  _I  ) )
14 psgnunilem2.d . . . . . . . . 9  |-  ( ph  ->  D  e.  V )
15 psgnunilem2.g . . . . . . . . . 10  |-  G  =  ( SymGrp `  D )
1615symggrp 17028 . . . . . . . . 9  |-  ( D  e.  V  ->  G  e.  Grp )
17 grpmnd 16665 . . . . . . . . 9  |-  ( G  e.  Grp  ->  G  e.  Mnd )
1814, 16, 173syl 18 . . . . . . . 8  |-  ( ph  ->  G  e.  Mnd )
19 psgnunilem2.t . . . . . . . . . . . 12  |-  T  =  ran  (pmTrsp `  D
)
20 eqid 2422 . . . . . . . . . . . 12  |-  ( Base `  G )  =  (
Base `  G )
2119, 15, 20symgtrf 17097 . . . . . . . . . . 11  |-  T  C_  ( Base `  G )
22 sswrd 12671 . . . . . . . . . . 11  |-  ( T 
C_  ( Base `  G
)  -> Word  T  C_ Word  ( Base `  G ) )
2321, 22mp1i 13 . . . . . . . . . 10  |-  ( ph  -> Word  T  C_ Word  ( Base `  G
) )
24 psgnunilem2.w . . . . . . . . . 10  |-  ( ph  ->  W  e. Word  T )
2523, 24sseldd 3465 . . . . . . . . 9  |-  ( ph  ->  W  e. Word  ( Base `  G ) )
26 swrdcl 12765 . . . . . . . . 9  |-  ( W  e. Word  ( Base `  G
)  ->  ( W substr  <.
0 ,  I >. )  e. Word  ( Base `  G
) )
2725, 26syl 17 . . . . . . . 8  |-  ( ph  ->  ( W substr  <. 0 ,  I >. )  e. Word  ( Base `  G ) )
2820gsumwcl 16611 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( W substr  <. 0 ,  I >. )  e. Word  ( Base `  G ) )  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G ) )
2918, 27, 28syl2anc 665 . . . . . . 7  |-  ( ph  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G
) )
3015, 20symgbasf1o 17011 . . . . . . 7  |-  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G
)  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) : D -1-1-onto-> D
)
3129, 30syl 17 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) : D -1-1-onto-> D )
3231adantr 466 . . . . 5  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) : D -1-1-onto-> D )
33 wrdf 12668 . . . . . . . . . 10  |-  ( W  e. Word  T  ->  W : ( 0..^ (
# `  W )
) --> T )
3424, 33syl 17 . . . . . . . . 9  |-  ( ph  ->  W : ( 0..^ ( # `  W
) ) --> T )
35 psgnunilem2.ix . . . . . . . . . 10  |-  ( ph  ->  I  e.  ( 0..^ L ) )
36 psgnunilem2.l . . . . . . . . . . 11  |-  ( ph  ->  ( # `  W
)  =  L )
3736oveq2d 6317 . . . . . . . . . 10  |-  ( ph  ->  ( 0..^ ( # `  W ) )  =  ( 0..^ L ) )
3835, 37eleqtrrd 2513 . . . . . . . . 9  |-  ( ph  ->  I  e.  ( 0..^ ( # `  W
) ) )
3934, 38ffvelrnd 6034 . . . . . . . 8  |-  ( ph  ->  ( W `  I
)  e.  T )
4021, 39sseldi 3462 . . . . . . 7  |-  ( ph  ->  ( W `  I
)  e.  ( Base `  G ) )
4115, 20symgbasf1o 17011 . . . . . . 7  |-  ( ( W `  I )  e.  ( Base `  G
)  ->  ( W `  I ) : D -1-1-onto-> D
)
4240, 41syl 17 . . . . . 6  |-  ( ph  ->  ( W `  I
) : D -1-1-onto-> D )
4342adantr 466 . . . . 5  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( W `  I ) : D -1-1-onto-> D )
4415, 20symgsssg 17095 . . . . . . . . . . . 12  |-  ( D  e.  V  ->  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) }  e.  (SubGrp `  G ) )
45 subgsubm 16826 . . . . . . . . . . . 12  |-  ( { j  e.  ( Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V  \  { A } ) }  e.  (SubGrp `  G
)  ->  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) }  e.  (SubMnd `  G ) )
4614, 44, 453syl 18 . . . . . . . . . . 11  |-  ( ph  ->  { j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) }  e.  (SubMnd `  G ) )
4746adantr 466 . . . . . . . . . 10  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) }  e.  (SubMnd `  G ) )
48 fzossfz 11938 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 0..^ L )  C_  (
0 ... L )
4948, 35sseldi 3462 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  I  e.  ( 0 ... L ) )
50 elfzuz3 11797 . . . . . . . . . . . . . . . . . . . 20  |-  ( I  e.  ( 0 ... L )  ->  L  e.  ( ZZ>= `  I )
)
5149, 50syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  L  e.  ( ZZ>= `  I ) )
5236, 51eqeltrd 2510 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( # `  W
)  e.  ( ZZ>= `  I ) )
53 fzoss2 11946 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  W )  e.  ( ZZ>= `  I )  ->  ( 0..^ I ) 
C_  ( 0..^ (
# `  W )
) )
5452, 53syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 0..^ I ) 
C_  ( 0..^ (
# `  W )
) )
5554sselda 3464 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  ( 0..^ I ) )  ->  s  e.  ( 0..^ ( # `  W
) ) )
5634ffvelrnda 6033 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  s  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  s
)  e.  T )
5721, 56sseldi 3462 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  s
)  e.  ( Base `  G ) )
5855, 57syldan 472 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  s  e.  ( 0..^ I ) )  ->  ( W `  s )  e.  (
Base `  G )
)
59 psgnunilem2.al . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. k  e.  ( 0..^ I )  -.  A  e.  dom  (
( W `  k
)  \  _I  )
)
60 fveq2 5877 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  s  ->  ( W `  k )  =  ( W `  s ) )
6160difeq1d 3582 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  s  ->  (
( W `  k
)  \  _I  )  =  ( ( W `
 s )  \  _I  ) )
6261dmeqd 5052 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  s  ->  dom  ( ( W `  k )  \  _I  )  =  dom  ( ( W `  s ) 
\  _I  ) )
6362eleq2d 2492 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  s  ->  ( A  e.  dom  ( ( W `  k ) 
\  _I  )  <->  A  e.  dom  ( ( W `  s )  \  _I  ) ) )
6463notbid 295 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  s  ->  ( -.  A  e.  dom  ( ( W `  k )  \  _I  ) 
<->  -.  A  e.  dom  ( ( W `  s )  \  _I  ) ) )
6564cbvralv 3055 . . . . . . . . . . . . . . . . 17  |-  ( A. k  e.  ( 0..^ I )  -.  A  e.  dom  ( ( W `
 k )  \  _I  )  <->  A. s  e.  ( 0..^ I )  -.  A  e.  dom  (
( W `  s
)  \  _I  )
)
6659, 65sylib 199 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. s  e.  ( 0..^ I )  -.  A  e.  dom  (
( W `  s
)  \  _I  )
)
6766r19.21bi 2794 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  s  e.  ( 0..^ I ) )  ->  -.  A  e.  dom  ( ( W `  s )  \  _I  ) )
68 difeq1 3576 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  ( W `  s )  ->  (
j  \  _I  )  =  ( ( W `
 s )  \  _I  ) )
6968dmeqd 5052 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  ( W `  s )  ->  dom  ( j  \  _I  )  =  dom  ( ( W `  s ) 
\  _I  ) )
7069sseq1d 3491 . . . . . . . . . . . . . . . . 17  |-  ( j  =  ( W `  s )  ->  ( dom  ( j  \  _I  )  C_  ( _V  \  { A } )  <->  dom  ( ( W `  s ) 
\  _I  )  C_  ( _V  \  { A } ) ) )
71 disj2 3840 . . . . . . . . . . . . . . . . . 18  |-  ( ( dom  ( ( W `
 s )  \  _I  )  i^i  { A } )  =  (/)  <->  dom  ( ( W `  s )  \  _I  )  C_  ( _V  \  { A } ) )
72 disjsn 4057 . . . . . . . . . . . . . . . . . 18  |-  ( ( dom  ( ( W `
 s )  \  _I  )  i^i  { A } )  =  (/)  <->  -.  A  e.  dom  ( ( W `  s ) 
\  _I  ) )
7371, 72bitr3i 254 . . . . . . . . . . . . . . . . 17  |-  ( dom  ( ( W `  s )  \  _I  )  C_  ( _V  \  { A } )  <->  -.  A  e.  dom  ( ( W `
 s )  \  _I  ) )
7470, 73syl6bb 264 . . . . . . . . . . . . . . . 16  |-  ( j  =  ( W `  s )  ->  ( dom  ( j  \  _I  )  C_  ( _V  \  { A } )  <->  -.  A  e.  dom  ( ( W `
 s )  \  _I  ) ) )
7574elrab 3229 . . . . . . . . . . . . . . 15  |-  ( ( W `  s )  e.  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) }  <->  ( ( W `  s )  e.  ( Base `  G
)  /\  -.  A  e.  dom  ( ( W `
 s )  \  _I  ) ) )
7658, 67, 75sylanbrc 668 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  s  e.  ( 0..^ I ) )  ->  ( W `  s )  e.  {
j  e.  ( Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V  \  { A } ) } )
77 eqid 2422 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 0..^ I )  |->  ( W `  s ) )  =  ( s  e.  ( 0..^ I )  |->  ( W `  s ) )
7876, 77fmptd 6057 . . . . . . . . . . . . 13  |-  ( ph  ->  ( s  e.  ( 0..^ I )  |->  ( W `  s ) ) : ( 0..^ I ) --> { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )
7936oveq2d 6317 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 0 ... ( # `
 W ) )  =  ( 0 ... L ) )
8049, 79eleqtrrd 2513 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  I  e.  ( 0 ... ( # `  W
) ) )
81 swrd0val 12767 . . . . . . . . . . . . . . . 16  |-  ( ( W  e. Word  T  /\  I  e.  ( 0 ... ( # `  W
) ) )  -> 
( W substr  <. 0 ,  I >. )  =  ( W  |`  ( 0..^ I ) ) )
8224, 80, 81syl2anc 665 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( W substr  <. 0 ,  I >. )  =  ( W  |`  ( 0..^ I ) ) )
8334feqmptd 5930 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  W  =  ( s  e.  ( 0..^ (
# `  W )
)  |->  ( W `  s ) ) )
8483reseq1d 5119 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( W  |`  (
0..^ I ) )  =  ( ( s  e.  ( 0..^ (
# `  W )
)  |->  ( W `  s ) )  |`  ( 0..^ I ) ) )
85 resmpt 5169 . . . . . . . . . . . . . . . 16  |-  ( ( 0..^ I )  C_  ( 0..^ ( # `  W
) )  ->  (
( s  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 s ) )  |`  ( 0..^ I ) )  =  ( s  e.  ( 0..^ I )  |->  ( W `  s ) ) )
8652, 53, 853syl 18 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( s  e.  ( 0..^ ( # `  W ) )  |->  ( W `  s ) )  |`  ( 0..^ I ) )  =  ( s  e.  ( 0..^ I )  |->  ( W `  s ) ) )
8782, 84, 863eqtrd 2467 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( W substr  <. 0 ,  I >. )  =  ( s  e.  ( 0..^ I )  |->  ( W `
 s ) ) )
8887feq1d 5728 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( W substr  <. 0 ,  I >. ) : ( 0..^ I ) --> { j  e.  ( Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V  \  { A } ) }  <-> 
( s  e.  ( 0..^ I )  |->  ( W `  s ) ) : ( 0..^ I ) --> { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } ) )
8978, 88mpbird 235 . . . . . . . . . . . 12  |-  ( ph  ->  ( W substr  <. 0 ,  I >. ) : ( 0..^ I ) --> { j  e.  ( Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V  \  { A } ) } )
9089adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( W substr  <. 0 ,  I >. ) : ( 0..^ I ) --> { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )
91 iswrdi 12667 . . . . . . . . . . 11  |-  ( ( W substr  <. 0 ,  I >. ) : ( 0..^ I ) --> { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) }  ->  ( W substr  <. 0 ,  I >. )  e. Word  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )
9290, 91syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( W substr  <. 0 ,  I >. )  e. Word  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )
93 gsumwsubmcl 16609 . . . . . . . . . 10  |-  ( ( { j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) }  e.  (SubMnd `  G )  /\  ( W substr  <. 0 ,  I >. )  e. Word  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  { j  e.  ( Base `  G
)  |  dom  (
j  \  _I  )  C_  ( _V  \  { A } ) } )
9447, 92, 93syl2anc 665 . . . . . . . . 9  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e. 
{ j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) } )
95 difeq1 3576 . . . . . . . . . . . . . 14  |-  ( j  =  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  ->  ( j  \  _I  )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )
)
9695dmeqd 5052 . . . . . . . . . . . . 13  |-  ( j  =  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  ->  dom  ( j 
\  _I  )  =  dom  ( ( G 
gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  ) )
9796sseq1d 3491 . . . . . . . . . . . 12  |-  ( j  =  ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  ->  ( dom  ( j  \  _I  )  C_  ( _V  \  { A } )  <->  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  C_  ( _V 
\  { A }
) ) )
9897elrab 3229 . . . . . . . . . . 11  |-  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e. 
{ j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) }  <->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G
)  /\  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  C_  ( _V 
\  { A }
) ) )
9998simprbi 465 . . . . . . . . . 10  |-  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e. 
{ j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) }  ->  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  C_  ( _V  \  { A } ) )
100 disj2 3840 . . . . . . . . . . 11  |-  ( ( dom  ( ( G 
gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  i^i  { A } )  =  (/)  <->  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  C_  ( _V  \  { A } ) )
101 disjsn 4057 . . . . . . . . . . 11  |-  ( ( dom  ( ( G 
gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  i^i  { A } )  =  (/)  <->  -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  ) )
102100, 101bitr3i 254 . . . . . . . . . 10  |-  ( dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  C_  ( _V  \  { A } )  <->  -.  A  e.  dom  ( ( G 
gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  ) )
10399, 102sylib 199 . . . . . . . . 9  |-  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e. 
{ j  e.  (
Base `  G )  |  dom  ( j  \  _I  )  C_  ( _V 
\  { A }
) }  ->  -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  ) )
10494, 103syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  ) )
105 psgnunilem2.a . . . . . . . . 9  |-  ( ph  ->  A  e.  dom  (
( W `  I
)  \  _I  )
)
106105adantr 466 . . . . . . . 8  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  A  e.  dom  ( ( W `
 I )  \  _I  ) )
107104, 106jca 534 . . . . . . 7  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  /\  A  e.  dom  ( ( W `  I )  \  _I  ) ) )
108107olcd 394 . . . . . 6  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  /\  -.  A  e.  dom  ( ( W `  I )  \  _I  ) )  \/  ( -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  /\  A  e.  dom  ( ( W `  I )  \  _I  ) ) ) )
109 excxor 1406 . . . . . 6  |-  ( ( A  e.  dom  (
( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  \/_  A  e. 
dom  ( ( W `
 I )  \  _I  ) )  <->  ( ( A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  /\  -.  A  e.  dom  ( ( W `
 I )  \  _I  ) )  \/  ( -.  A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  /\  A  e.  dom  ( ( W `  I )  \  _I  ) ) ) )
110108, 109sylibr 215 . . . . 5  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  \/_  A  e. 
dom  ( ( W `
 I )  \  _I  ) ) )
111 f1omvdco3 17077 . . . . 5  |-  ( ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) : D -1-1-onto-> D  /\  ( W `
 I ) : D -1-1-onto-> D  /\  ( A  e.  dom  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  \  _I  )  \/_  A  e. 
dom  ( ( W `
 I )  \  _I  ) ) )  ->  A  e.  dom  ( ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) )  \  _I  ) )
11232, 43, 110, 111syl3anc 1264 . . . 4  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  A  e.  dom  ( ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) )  \  _I  ) )
11324adantr 466 . . . . . . . . . 10  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  W  e. Word  T )
114 elfzo0 11956 . . . . . . . . . . . . . . 15  |-  ( I  e.  ( 0..^ L )  <->  ( I  e. 
NN0  /\  L  e.  NN  /\  I  <  L
) )
115114simp2bi 1021 . . . . . . . . . . . . . 14  |-  ( I  e.  ( 0..^ L )  ->  L  e.  NN )
11635, 115syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  L  e.  NN )
11736, 116eqeltrd 2510 . . . . . . . . . . . 12  |-  ( ph  ->  ( # `  W
)  e.  NN )
118 wrdfin 12678 . . . . . . . . . . . . 13  |-  ( W  e. Word  T  ->  W  e.  Fin )
119 hashnncl 12546 . . . . . . . . . . . . 13  |-  ( W  e.  Fin  ->  (
( # `  W )  e.  NN  <->  W  =/=  (/) ) )
12024, 118, 1193syl 18 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( # `  W
)  e.  NN  <->  W  =/=  (/) ) )
121117, 120mpbid 213 . . . . . . . . . . 11  |-  ( ph  ->  W  =/=  (/) )
122121adantr 466 . . . . . . . . . 10  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  W  =/=  (/) )
123 swrdccatwrd 12814 . . . . . . . . . . 11  |-  ( ( W  e. Word  T  /\  W  =/=  (/) )  ->  (
( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. ) ++  <" ( lastS  `  W ) "> )  =  W )
124123eqcomd 2430 . . . . . . . . . 10  |-  ( ( W  e. Word  T  /\  W  =/=  (/) )  ->  W  =  ( ( W substr  <. 0 ,  ( (
# `  W )  -  1 ) >.
) ++  <" ( lastS  `  W
) "> )
)
125113, 122, 124syl2anc 665 . . . . . . . . 9  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  W  =  ( ( W substr  <. 0 ,  ( (
# `  W )  -  1 ) >.
) ++  <" ( lastS  `  W
) "> )
)
12636oveq1d 6316 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( # `  W
)  -  1 )  =  ( L  - 
1 ) )
127126adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( # `  W )  -  1 )  =  ( L  -  1 ) )
128116nncnd 10625 . . . . . . . . . . . . 13  |-  ( ph  ->  L  e.  CC )
129 1cnd 9659 . . . . . . . . . . . . 13  |-  ( ph  ->  1  e.  CC )
130 elfzoelz 11920 . . . . . . . . . . . . . . 15  |-  ( I  e.  ( 0..^ L )  ->  I  e.  ZZ )
13135, 130syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  I  e.  ZZ )
132131zcnd 11041 . . . . . . . . . . . . 13  |-  ( ph  ->  I  e.  CC )
133128, 129, 132subadd2d 10005 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( L  - 
1 )  =  I  <-> 
( I  +  1 )  =  L ) )
134133biimpar 487 . . . . . . . . . . 11  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( L  -  1 )  =  I )
135127, 134eqtrd 2463 . . . . . . . . . 10  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( # `  W )  -  1 )  =  I )
136 opeq2 4185 . . . . . . . . . . . . 13  |-  ( ( ( # `  W
)  -  1 )  =  I  ->  <. 0 ,  ( ( # `  W )  -  1 ) >.  =  <. 0 ,  I >. )
137136oveq2d 6317 . . . . . . . . . . . 12  |-  ( ( ( # `  W
)  -  1 )  =  I  ->  ( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. )  =  ( W substr  <. 0 ,  I >. ) )
138137adantl 467 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 W )  - 
1 )  =  I )  ->  ( W substr  <.
0 ,  ( (
# `  W )  -  1 ) >.
)  =  ( W substr  <. 0 ,  I >. ) )
139 lsw 12703 . . . . . . . . . . . . . 14  |-  ( W  e. Word  T  ->  ( lastS  `  W )  =  ( W `  ( (
# `  W )  -  1 ) ) )
14024, 139syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( lastS  `  W )  =  ( W `  ( ( # `  W
)  -  1 ) ) )
141 fveq2 5877 . . . . . . . . . . . . 13  |-  ( ( ( # `  W
)  -  1 )  =  I  ->  ( W `  ( ( # `
 W )  - 
1 ) )  =  ( W `  I
) )
142140, 141sylan9eq 2483 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 W )  - 
1 )  =  I )  ->  ( lastS  `  W
)  =  ( W `
 I ) )
143142s1eqd 12732 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 W )  - 
1 )  =  I )  ->  <" ( lastS  `  W ) ">  =  <" ( W `
 I ) "> )
144138, 143oveq12d 6319 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 W )  - 
1 )  =  I )  ->  ( ( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. ) ++  <" ( lastS  `  W ) "> )  =  ( ( W substr  <. 0 ,  I >. ) ++  <" ( W `
 I ) "> ) )
145135, 144syldan 472 . . . . . . . . 9  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. ) ++  <" ( lastS  `  W ) "> )  =  ( ( W substr  <. 0 ,  I >. ) ++  <" ( W `
 I ) "> ) )
146125, 145eqtrd 2463 . . . . . . . 8  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  W  =  ( ( W substr  <. 0 ,  I >. ) ++ 
<" ( W `  I ) "> ) )
147146oveq2d 6317 . . . . . . 7  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( G  gsumg  W )  =  ( G  gsumg  ( ( W substr  <. 0 ,  I >. ) ++  <" ( W `  I ) "> ) ) )
14840s1cld 12734 . . . . . . . . 9  |-  ( ph  ->  <" ( W `
 I ) ">  e. Word  ( Base `  G ) )
149 eqid 2422 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
15020, 149gsumccat 16612 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  ( W substr  <. 0 ,  I >. )  e. Word  ( Base `  G )  /\  <" ( W `  I ) ">  e. Word  ( Base `  G
) )  ->  ( G  gsumg  ( ( W substr  <. 0 ,  I >. ) ++  <" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( G  gsumg  <" ( W `  I ) "> ) ) )
15118, 27, 148, 150syl3anc 1264 . . . . . . . 8  |-  ( ph  ->  ( G  gsumg  ( ( W substr  <. 0 ,  I >. ) ++  <" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( G  gsumg  <" ( W `  I ) "> ) ) )
152151adantr 466 . . . . . . 7  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( G  gsumg  ( ( W substr  <. 0 ,  I >. ) ++  <" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( G  gsumg  <" ( W `  I ) "> ) ) )
15320gsumws1 16610 . . . . . . . . . . 11  |-  ( ( W `  I )  e.  ( Base `  G
)  ->  ( G  gsumg  <" ( W `  I ) "> )  =  ( W `  I ) )
15440, 153syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( G  gsumg 
<" ( W `  I ) "> )  =  ( W `  I ) )
155154oveq2d 6317 . . . . . . . . 9  |-  ( ph  ->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( G  gsumg  <" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( W `  I ) ) )
15615, 20, 149symgov 17018 . . . . . . . . . 10  |-  ( ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  e.  ( Base `  G
)  /\  ( W `  I )  e.  (
Base `  G )
)  ->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G ) ( W `  I
) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) ) )
15729, 40, 156syl2anc 665 . . . . . . . . 9  |-  ( ph  ->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( W `  I ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `
 I ) ) )
158155, 157eqtrd 2463 . . . . . . . 8  |-  ( ph  ->  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G
) ( G  gsumg  <" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `
 I ) ) )
159158adantr 466 . . . . . . 7  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( G  gsumg  ( W substr  <. 0 ,  I >. ) ) ( +g  `  G ) ( G  gsumg 
<" ( W `  I ) "> ) )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) ) )
160147, 152, 1593eqtrd 2467 . . . . . 6  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  ( G  gsumg  W )  =  ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) ) )
161160difeq1d 3582 . . . . 5  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  (
( G  gsumg  W )  \  _I  )  =  ( (
( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) )  \  _I  ) )
162161dmeqd 5052 . . . 4  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  dom  ( ( G  gsumg  W ) 
\  _I  )  =  dom  ( ( ( G  gsumg  ( W substr  <. 0 ,  I >. ) )  o.  ( W `  I
) )  \  _I  ) )
163112, 162eleqtrrd 2513 . . 3  |-  ( (
ph  /\  ( I  +  1 )  =  L )  ->  A  e.  dom  ( ( G 
gsumg  W )  \  _I  ) )
16413, 163mtand 663 . 2  |-  ( ph  ->  -.  ( I  + 
1 )  =  L )
165 fzostep1 12020 . . . 4  |-  ( I  e.  ( 0..^ L )  ->  ( (
I  +  1 )  e.  ( 0..^ L )  \/  ( I  +  1 )  =  L ) )
16635, 165syl 17 . . 3  |-  ( ph  ->  ( ( I  + 
1 )  e.  ( 0..^ L )  \/  ( I  +  1 )  =  L ) )
167166ord 378 . 2  |-  ( ph  ->  ( -.  ( I  +  1 )  e.  ( 0..^ L )  ->  ( I  + 
1 )  =  L ) )
168164, 167mt3d 128 1  |-  ( ph  ->  ( I  +  1 )  e.  ( 0..^ L ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    \/_ wxo 1400    = wceq 1437    e. wcel 1868    =/= wne 2618   A.wral 2775   {crab 2779   _Vcvv 3081    \ cdif 3433    i^i cin 3435    C_ wss 3436   (/)c0 3761   {csn 3996   <.cop 4002   class class class wbr 4420    |-> cmpt 4479    _I cid 4759   dom cdm 4849   ran crn 4850    |` cres 4851    o. ccom 4853   -->wf 5593   -1-1-onto->wf1o 5596   ` cfv 5597  (class class class)co 6301   Fincfn 7573   0cc0 9539   1c1 9540    + caddc 9542    < clt 9675    - cmin 9860   NNcn 10609   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   ...cfz 11784  ..^cfzo 11915   #chash 12514  Word cword 12648   lastS clsw 12649   ++ cconcat 12650   <"cs1 12651   substr csubstr 12652   Basecbs 15108   +g cplusg 15177    gsumg cgsu 15326   Mndcmnd 16522  SubMndcsubmnd 16568   Grpcgrp 16656  SubGrpcsubg 16798   SymGrpcsymg 17005  pmTrspcpmtr 17069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-xor 1401  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-1st 6803  df-2nd 6804  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-2o 7187  df-oadd 7190  df-er 7367  df-map 7478  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-card 8374  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11785  df-fzo 11916  df-seq 12213  df-hash 12515  df-word 12656  df-lsw 12657  df-concat 12658  df-s1 12659  df-substr 12660  df-struct 15110  df-ndx 15111  df-slot 15112  df-base 15113  df-sets 15114  df-ress 15115  df-plusg 15190  df-tset 15196  df-0g 15327  df-gsum 15328  df-mgm 16475  df-sgrp 16514  df-mnd 16524  df-submnd 16570  df-grp 16660  df-minusg 16661  df-subg 16801  df-symg 17006  df-pmtr 17070
This theorem is referenced by:  psgnunilem2  17123
  Copyright terms: Public domain W3C validator