MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnunilem3 Structured version   Unicode version

Theorem psgnunilem3 15995
Description: Lemma for psgnuni 15998. Any nonempty representation of the identity can be incrementally transformed into a representation two shorter. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Hypotheses
Ref Expression
psgnunilem3.g  |-  G  =  ( SymGrp `  D )
psgnunilem3.t  |-  T  =  ran  (pmTrsp `  D
)
psgnunilem3.d  |-  ( ph  ->  D  e.  V )
psgnunilem3.w1  |-  ( ph  ->  W  e. Word  T )
psgnunilem3.l  |-  ( ph  ->  ( # `  W
)  =  L )
psgnunilem3.w2  |-  ( ph  ->  ( # `  W
)  e.  NN )
psgnunilem3.w3  |-  ( ph  ->  ( G  gsumg  W )  =  (  _I  |`  D )
)
psgnunilem3.in  |-  ( ph  ->  -.  E. x  e. Word  T ( ( # `  x )  =  ( L  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D ) ) )
Assertion
Ref Expression
psgnunilem3  |-  -.  ph
Distinct variable groups:    x, D    x, G    x, L    x, T    x, W    ph, x
Allowed substitution hint:    V( x)

Proof of Theorem psgnunilem3
Dummy variables  a 
b  c  d  e  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnunilem3.l . . . 4  |-  ( ph  ->  ( # `  W
)  =  L )
2 psgnunilem3.w2 . . . 4  |-  ( ph  ->  ( # `  W
)  e.  NN )
31, 2eqeltrrd 2516 . . 3  |-  ( ph  ->  L  e.  NN )
43nnnn0d 10632 . 2  |-  ( ph  ->  L  e.  NN0 )
5 psgnunilem3.w1 . . . . . . 7  |-  ( ph  ->  W  e. Word  T )
6 wrdf 12236 . . . . . . 7  |-  ( W  e. Word  T  ->  W : ( 0..^ (
# `  W )
) --> T )
75, 6syl 16 . . . . . 6  |-  ( ph  ->  W : ( 0..^ ( # `  W
) ) --> T )
8 0nn0 10590 . . . . . . . . 9  |-  0  e.  NN0
98a1i 11 . . . . . . . 8  |-  ( ph  ->  0  e.  NN0 )
103nngt0d 10361 . . . . . . . 8  |-  ( ph  ->  0  <  L )
11 elfzo0 11583 . . . . . . . 8  |-  ( 0  e.  ( 0..^ L )  <->  ( 0  e. 
NN0  /\  L  e.  NN  /\  0  <  L
) )
129, 3, 10, 11syl3anbrc 1167 . . . . . . 7  |-  ( ph  ->  0  e.  ( 0..^ L ) )
131oveq2d 6106 . . . . . . 7  |-  ( ph  ->  ( 0..^ ( # `  W ) )  =  ( 0..^ L ) )
1412, 13eleqtrrd 2518 . . . . . 6  |-  ( ph  ->  0  e.  ( 0..^ ( # `  W
) ) )
157, 14ffvelrnd 5841 . . . . 5  |-  ( ph  ->  ( W `  0
)  e.  T )
16 eqid 2441 . . . . . 6  |-  (pmTrsp `  D )  =  (pmTrsp `  D )
17 psgnunilem3.t . . . . . 6  |-  T  =  ran  (pmTrsp `  D
)
1816, 17pmtrfmvdn0 15961 . . . . 5  |-  ( ( W `  0 )  e.  T  ->  dom  ( ( W ` 
0 )  \  _I  )  =/=  (/) )
1915, 18syl 16 . . . 4  |-  ( ph  ->  dom  ( ( W `
 0 )  \  _I  )  =/=  (/) )
20 n0 3643 . . . 4  |-  ( dom  ( ( W ` 
0 )  \  _I  )  =/=  (/)  <->  E. e  e  e. 
dom  ( ( W `
 0 )  \  _I  ) )
2119, 20sylib 196 . . 3  |-  ( ph  ->  E. e  e  e. 
dom  ( ( W `
 0 )  \  _I  ) )
22 fzonel 11561 . . . . . . . 8  |-  -.  L  e.  ( 0..^ L )
23 simpr1 989 . . . . . . . 8  |-  ( ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( L  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  L )  \  _I  )  /\  A. c  e.  ( 0..^ L )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  ->  L  e.  ( 0..^ L ) )
2422, 23mto 176 . . . . . . 7  |-  -.  (
( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( L  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  L )  \  _I  )  /\  A. c  e.  ( 0..^ L )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )
2524a1i 11 . . . . . 6  |-  ( w  e. Word  T  ->  -.  ( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( L  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  L )  \  _I  )  /\  A. c  e.  ( 0..^ L )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )
2625nrex 2816 . . . . 5  |-  -.  E. w  e. Word  T (
( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( L  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  L )  \  _I  )  /\  A. c  e.  ( 0..^ L )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )
27 eleq1 2501 . . . . . . . . . 10  |-  ( a  =  0  ->  (
a  e.  ( 0..^ L )  <->  0  e.  ( 0..^ L ) ) )
28 fveq2 5688 . . . . . . . . . . . . 13  |-  ( a  =  0  ->  (
w `  a )  =  ( w ` 
0 ) )
2928difeq1d 3470 . . . . . . . . . . . 12  |-  ( a  =  0  ->  (
( w `  a
)  \  _I  )  =  ( ( w `
 0 )  \  _I  ) )
3029dmeqd 5038 . . . . . . . . . . 11  |-  ( a  =  0  ->  dom  ( ( w `  a )  \  _I  )  =  dom  ( ( w `  0 ) 
\  _I  ) )
3130eleq2d 2508 . . . . . . . . . 10  |-  ( a  =  0  ->  (
e  e.  dom  (
( w `  a
)  \  _I  )  <->  e  e.  dom  ( ( w `  0 ) 
\  _I  ) ) )
32 oveq2 6098 . . . . . . . . . . 11  |-  ( a  =  0  ->  (
0..^ a )  =  ( 0..^ 0 ) )
3332raleqdv 2921 . . . . . . . . . 10  |-  ( a  =  0  ->  ( A. c  e.  (
0..^ a )  -.  e  e.  dom  (
( w `  c
)  \  _I  )  <->  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( w `
 c )  \  _I  ) ) )
3427, 31, 333anbi123d 1284 . . . . . . . . 9  |-  ( a  =  0  ->  (
( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a ) 
\  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `
 c )  \  _I  ) )  <->  ( 0  e.  ( 0..^ L )  /\  e  e. 
dom  ( ( w `
 0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )
3534anbi2d 698 . . . . . . . 8  |-  ( a  =  0  ->  (
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  ( (
( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( 0  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w ` 
0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
3635rexbidv 2734 . . . . . . 7  |-  ( a  =  0  ->  ( E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( 0  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w ` 
0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
3736imbi2d 316 . . . . . 6  |-  ( a  =  0  ->  (
( ( ph  /\  e  e.  dom  ( ( W `  0 ) 
\  _I  ) )  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )  <-> 
( ( ph  /\  e  e.  dom  ( ( W `  0 ) 
\  _I  ) )  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( 0  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w ` 
0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) ) )
38 eleq1 2501 . . . . . . . . . . 11  |-  ( a  =  b  ->  (
a  e.  ( 0..^ L )  <->  b  e.  ( 0..^ L ) ) )
39 fveq2 5688 . . . . . . . . . . . . . 14  |-  ( a  =  b  ->  (
w `  a )  =  ( w `  b ) )
4039difeq1d 3470 . . . . . . . . . . . . 13  |-  ( a  =  b  ->  (
( w `  a
)  \  _I  )  =  ( ( w `
 b )  \  _I  ) )
4140dmeqd 5038 . . . . . . . . . . . 12  |-  ( a  =  b  ->  dom  ( ( w `  a )  \  _I  )  =  dom  ( ( w `  b ) 
\  _I  ) )
4241eleq2d 2508 . . . . . . . . . . 11  |-  ( a  =  b  ->  (
e  e.  dom  (
( w `  a
)  \  _I  )  <->  e  e.  dom  ( ( w `  b ) 
\  _I  ) ) )
43 oveq2 6098 . . . . . . . . . . . 12  |-  ( a  =  b  ->  (
0..^ a )  =  ( 0..^ b ) )
4443raleqdv 2921 . . . . . . . . . . 11  |-  ( a  =  b  ->  ( A. c  e.  (
0..^ a )  -.  e  e.  dom  (
( w `  c
)  \  _I  )  <->  A. c  e.  ( 0..^ b )  -.  e  e.  dom  ( ( w `
 c )  \  _I  ) ) )
4538, 42, 443anbi123d 1284 . . . . . . . . . 10  |-  ( a  =  b  ->  (
( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a ) 
\  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `
 c )  \  _I  ) )  <->  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  b )  \  _I  )  /\  A. c  e.  ( 0..^ b )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )
4645anbi2d 698 . . . . . . . . 9  |-  ( a  =  b  ->  (
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  ( (
( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  b )  \  _I  )  /\  A. c  e.  ( 0..^ b )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
4746rexbidv 2734 . . . . . . . 8  |-  ( a  =  b  ->  ( E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  b )  \  _I  )  /\  A. c  e.  ( 0..^ b )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
48 oveq2 6098 . . . . . . . . . . . 12  |-  ( w  =  x  ->  ( G  gsumg  w )  =  ( G  gsumg  x ) )
4948eqeq1d 2449 . . . . . . . . . . 11  |-  ( w  =  x  ->  (
( G  gsumg  w )  =  (  _I  |`  D )  <->  ( G  gsumg  x )  =  (  _I  |`  D )
) )
50 fveq2 5688 . . . . . . . . . . . 12  |-  ( w  =  x  ->  ( # `
 w )  =  ( # `  x
) )
5150eqeq1d 2449 . . . . . . . . . . 11  |-  ( w  =  x  ->  (
( # `  w )  =  L  <->  ( # `  x
)  =  L ) )
5249, 51anbi12d 705 . . . . . . . . . 10  |-  ( w  =  x  ->  (
( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  <-> 
( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L ) ) )
53 fveq1 5687 . . . . . . . . . . . . . 14  |-  ( w  =  x  ->  (
w `  b )  =  ( x `  b ) )
5453difeq1d 3470 . . . . . . . . . . . . 13  |-  ( w  =  x  ->  (
( w `  b
)  \  _I  )  =  ( ( x `
 b )  \  _I  ) )
5554dmeqd 5038 . . . . . . . . . . . 12  |-  ( w  =  x  ->  dom  ( ( w `  b )  \  _I  )  =  dom  ( ( x `  b ) 
\  _I  ) )
5655eleq2d 2508 . . . . . . . . . . 11  |-  ( w  =  x  ->  (
e  e.  dom  (
( w `  b
)  \  _I  )  <->  e  e.  dom  ( ( x `  b ) 
\  _I  ) ) )
57 fveq1 5687 . . . . . . . . . . . . . . . . 17  |-  ( w  =  x  ->  (
w `  c )  =  ( x `  c ) )
5857difeq1d 3470 . . . . . . . . . . . . . . . 16  |-  ( w  =  x  ->  (
( w `  c
)  \  _I  )  =  ( ( x `
 c )  \  _I  ) )
5958dmeqd 5038 . . . . . . . . . . . . . . 15  |-  ( w  =  x  ->  dom  ( ( w `  c )  \  _I  )  =  dom  ( ( x `  c ) 
\  _I  ) )
6059eleq2d 2508 . . . . . . . . . . . . . 14  |-  ( w  =  x  ->  (
e  e.  dom  (
( w `  c
)  \  _I  )  <->  e  e.  dom  ( ( x `  c ) 
\  _I  ) ) )
6160notbid 294 . . . . . . . . . . . . 13  |-  ( w  =  x  ->  ( -.  e  e.  dom  ( ( w `  c )  \  _I  ) 
<->  -.  e  e.  dom  ( ( x `  c )  \  _I  ) ) )
6261ralbidv 2733 . . . . . . . . . . . 12  |-  ( w  =  x  ->  ( A. c  e.  (
0..^ b )  -.  e  e.  dom  (
( w `  c
)  \  _I  )  <->  A. c  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `
 c )  \  _I  ) ) )
63 fveq2 5688 . . . . . . . . . . . . . . . . 17  |-  ( c  =  d  ->  (
x `  c )  =  ( x `  d ) )
6463difeq1d 3470 . . . . . . . . . . . . . . . 16  |-  ( c  =  d  ->  (
( x `  c
)  \  _I  )  =  ( ( x `
 d )  \  _I  ) )
6564dmeqd 5038 . . . . . . . . . . . . . . 15  |-  ( c  =  d  ->  dom  ( ( x `  c )  \  _I  )  =  dom  ( ( x `  d ) 
\  _I  ) )
6665eleq2d 2508 . . . . . . . . . . . . . 14  |-  ( c  =  d  ->  (
e  e.  dom  (
( x `  c
)  \  _I  )  <->  e  e.  dom  ( ( x `  d ) 
\  _I  ) ) )
6766notbid 294 . . . . . . . . . . . . 13  |-  ( c  =  d  ->  ( -.  e  e.  dom  ( ( x `  c )  \  _I  ) 
<->  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) )
6867cbvralv 2945 . . . . . . . . . . . 12  |-  ( A. c  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `
 c )  \  _I  )  <->  A. d  e.  ( 0..^ b )  -.  e  e.  dom  (
( x `  d
)  \  _I  )
)
6962, 68syl6bb 261 . . . . . . . . . . 11  |-  ( w  =  x  ->  ( A. c  e.  (
0..^ b )  -.  e  e.  dom  (
( w `  c
)  \  _I  )  <->  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `
 d )  \  _I  ) ) )
7056, 693anbi23d 1287 . . . . . . . . . 10  |-  ( w  =  x  ->  (
( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  b ) 
\  _I  )  /\  A. c  e.  ( 0..^ b )  -.  e  e.  dom  ( ( w `
 c )  \  _I  ) )  <->  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) )
7152, 70anbi12d 705 . . . . . . . . 9  |-  ( w  =  x  ->  (
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  b )  \  _I  )  /\  A. c  e.  ( 0..^ b )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  ( (
( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )
7271cbvrexv 2946 . . . . . . . 8  |-  ( E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  b )  \  _I  )  /\  A. c  e.  ( 0..^ b )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  E. x  e. Word  T ( ( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) )
7347, 72syl6bb 261 . . . . . . 7  |-  ( a  =  b  ->  ( E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  E. x  e. Word  T ( ( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )
7473imbi2d 316 . . . . . 6  |-  ( a  =  b  ->  (
( ( ph  /\  e  e.  dom  ( ( W `  0 ) 
\  _I  ) )  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )  <-> 
( ( ph  /\  e  e.  dom  ( ( W `  0 ) 
\  _I  ) )  ->  E. x  e. Word  T
( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) ) )
75 eleq1 2501 . . . . . . . . . 10  |-  ( a  =  ( b  +  1 )  ->  (
a  e.  ( 0..^ L )  <->  ( b  +  1 )  e.  ( 0..^ L ) ) )
76 fveq2 5688 . . . . . . . . . . . . 13  |-  ( a  =  ( b  +  1 )  ->  (
w `  a )  =  ( w `  ( b  +  1 ) ) )
7776difeq1d 3470 . . . . . . . . . . . 12  |-  ( a  =  ( b  +  1 )  ->  (
( w `  a
)  \  _I  )  =  ( ( w `
 ( b  +  1 ) )  \  _I  ) )
7877dmeqd 5038 . . . . . . . . . . 11  |-  ( a  =  ( b  +  1 )  ->  dom  ( ( w `  a )  \  _I  )  =  dom  ( ( w `  ( b  +  1 ) ) 
\  _I  ) )
7978eleq2d 2508 . . . . . . . . . 10  |-  ( a  =  ( b  +  1 )  ->  (
e  e.  dom  (
( w `  a
)  \  _I  )  <->  e  e.  dom  ( ( w `  ( b  +  1 ) ) 
\  _I  ) ) )
80 oveq2 6098 . . . . . . . . . . 11  |-  ( a  =  ( b  +  1 )  ->  (
0..^ a )  =  ( 0..^ ( b  +  1 ) ) )
8180raleqdv 2921 . . . . . . . . . 10  |-  ( a  =  ( b  +  1 )  ->  ( A. c  e.  (
0..^ a )  -.  e  e.  dom  (
( w `  c
)  \  _I  )  <->  A. c  e.  ( 0..^ ( b  +  1 ) )  -.  e  e.  dom  ( ( w `
 c )  \  _I  ) ) )
8275, 79, 813anbi123d 1284 . . . . . . . . 9  |-  ( a  =  ( b  +  1 )  ->  (
( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a ) 
\  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `
 c )  \  _I  ) )  <->  ( (
b  +  1 )  e.  ( 0..^ L )  /\  e  e. 
dom  ( ( w `
 ( b  +  1 ) )  \  _I  )  /\  A. c  e.  ( 0..^ ( b  +  1 ) )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )
8382anbi2d 698 . . . . . . . 8  |-  ( a  =  ( b  +  1 )  ->  (
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  ( (
( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( b  +  1 )  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  ( b  +  1 ) )  \  _I  )  /\  A. c  e.  ( 0..^ ( b  +  1 ) )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
8483rexbidv 2734 . . . . . . 7  |-  ( a  =  ( b  +  1 )  ->  ( E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( b  +  1 )  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  ( b  +  1 ) )  \  _I  )  /\  A. c  e.  ( 0..^ ( b  +  1 ) )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
8584imbi2d 316 . . . . . 6  |-  ( a  =  ( b  +  1 )  ->  (
( ( ph  /\  e  e.  dom  ( ( W `  0 ) 
\  _I  ) )  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )  <-> 
( ( ph  /\  e  e.  dom  ( ( W `  0 ) 
\  _I  ) )  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( b  +  1 )  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  ( b  +  1 ) )  \  _I  )  /\  A. c  e.  ( 0..^ ( b  +  1 ) )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) ) )
86 eleq1 2501 . . . . . . . . . 10  |-  ( a  =  L  ->  (
a  e.  ( 0..^ L )  <->  L  e.  ( 0..^ L ) ) )
87 fveq2 5688 . . . . . . . . . . . . 13  |-  ( a  =  L  ->  (
w `  a )  =  ( w `  L ) )
8887difeq1d 3470 . . . . . . . . . . . 12  |-  ( a  =  L  ->  (
( w `  a
)  \  _I  )  =  ( ( w `
 L )  \  _I  ) )
8988dmeqd 5038 . . . . . . . . . . 11  |-  ( a  =  L  ->  dom  ( ( w `  a )  \  _I  )  =  dom  ( ( w `  L ) 
\  _I  ) )
9089eleq2d 2508 . . . . . . . . . 10  |-  ( a  =  L  ->  (
e  e.  dom  (
( w `  a
)  \  _I  )  <->  e  e.  dom  ( ( w `  L ) 
\  _I  ) ) )
91 oveq2 6098 . . . . . . . . . . 11  |-  ( a  =  L  ->  (
0..^ a )  =  ( 0..^ L ) )
9291raleqdv 2921 . . . . . . . . . 10  |-  ( a  =  L  ->  ( A. c  e.  (
0..^ a )  -.  e  e.  dom  (
( w `  c
)  \  _I  )  <->  A. c  e.  ( 0..^ L )  -.  e  e.  dom  ( ( w `
 c )  \  _I  ) ) )
9386, 90, 923anbi123d 1284 . . . . . . . . 9  |-  ( a  =  L  ->  (
( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a ) 
\  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `
 c )  \  _I  ) )  <->  ( L  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  L )  \  _I  )  /\  A. c  e.  ( 0..^ L )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )
9493anbi2d 698 . . . . . . . 8  |-  ( a  =  L  ->  (
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  ( (
( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( L  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  L )  \  _I  )  /\  A. c  e.  ( 0..^ L )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
9594rexbidv 2734 . . . . . . 7  |-  ( a  =  L  ->  ( E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( L  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  L )  \  _I  )  /\  A. c  e.  ( 0..^ L )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
9695imbi2d 316 . . . . . 6  |-  ( a  =  L  ->  (
( ( ph  /\  e  e.  dom  ( ( W `  0 ) 
\  _I  ) )  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( a  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  a )  \  _I  )  /\  A. c  e.  ( 0..^ a )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )  <-> 
( ( ph  /\  e  e.  dom  ( ( W `  0 ) 
\  _I  ) )  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( L  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  L )  \  _I  )  /\  A. c  e.  ( 0..^ L )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) ) )
975adantr 462 . . . . . . 7  |-  ( (
ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) )  ->  W  e. Word  T )
98 psgnunilem3.w3 . . . . . . . . 9  |-  ( ph  ->  ( G  gsumg  W )  =  (  _I  |`  D )
)
9998, 1jca 529 . . . . . . . 8  |-  ( ph  ->  ( ( G  gsumg  W )  =  (  _I  |`  D )  /\  ( # `  W
)  =  L ) )
10099adantr 462 . . . . . . 7  |-  ( (
ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) )  ->  (
( G  gsumg  W )  =  (  _I  |`  D )  /\  ( # `  W
)  =  L ) )
10112adantr 462 . . . . . . . 8  |-  ( (
ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) )  ->  0  e.  ( 0..^ L ) )
102 simpr 458 . . . . . . . 8  |-  ( (
ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) )  ->  e  e.  dom  ( ( W `
 0 )  \  _I  ) )
103 ral0 3781 . . . . . . . . . 10  |-  A. c  e.  (/)  -.  e  e. 
dom  ( ( W `
 c )  \  _I  )
104 fzo0 11569 . . . . . . . . . . 11  |-  ( 0..^ 0 )  =  (/)
105104raleqi 2919 . . . . . . . . . 10  |-  ( A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( W `
 c )  \  _I  )  <->  A. c  e.  (/)  -.  e  e.  dom  (
( W `  c
)  \  _I  )
)
106103, 105mpbir 209 . . . . . . . . 9  |-  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( W `  c )  \  _I  )
107106a1i 11 . . . . . . . 8  |-  ( (
ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) )  ->  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( W `  c )  \  _I  ) )
108101, 102, 1073jca 1163 . . . . . . 7  |-  ( (
ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) )  ->  (
0  e.  ( 0..^ L )  /\  e  e.  dom  ( ( W `
 0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( W `  c )  \  _I  ) ) )
109 oveq2 6098 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( G  gsumg  w )  =  ( G  gsumg  W ) )
110109eqeq1d 2449 . . . . . . . . . 10  |-  ( w  =  W  ->  (
( G  gsumg  w )  =  (  _I  |`  D )  <->  ( G  gsumg  W )  =  (  _I  |`  D )
) )
111 fveq2 5688 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( # `
 w )  =  ( # `  W
) )
112111eqeq1d 2449 . . . . . . . . . 10  |-  ( w  =  W  ->  (
( # `  w )  =  L  <->  ( # `  W
)  =  L ) )
113110, 112anbi12d 705 . . . . . . . . 9  |-  ( w  =  W  ->  (
( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  <-> 
( ( G  gsumg  W )  =  (  _I  |`  D )  /\  ( # `  W
)  =  L ) ) )
114 fveq1 5687 . . . . . . . . . . . . 13  |-  ( w  =  W  ->  (
w `  0 )  =  ( W ` 
0 ) )
115114difeq1d 3470 . . . . . . . . . . . 12  |-  ( w  =  W  ->  (
( w `  0
)  \  _I  )  =  ( ( W `
 0 )  \  _I  ) )
116115dmeqd 5038 . . . . . . . . . . 11  |-  ( w  =  W  ->  dom  ( ( w ` 
0 )  \  _I  )  =  dom  ( ( W `  0 ) 
\  _I  ) )
117116eleq2d 2508 . . . . . . . . . 10  |-  ( w  =  W  ->  (
e  e.  dom  (
( w `  0
)  \  _I  )  <->  e  e.  dom  ( ( W `  0 ) 
\  _I  ) ) )
118 fveq1 5687 . . . . . . . . . . . . . . 15  |-  ( w  =  W  ->  (
w `  c )  =  ( W `  c ) )
119118difeq1d 3470 . . . . . . . . . . . . . 14  |-  ( w  =  W  ->  (
( w `  c
)  \  _I  )  =  ( ( W `
 c )  \  _I  ) )
120119dmeqd 5038 . . . . . . . . . . . . 13  |-  ( w  =  W  ->  dom  ( ( w `  c )  \  _I  )  =  dom  ( ( W `  c ) 
\  _I  ) )
121120eleq2d 2508 . . . . . . . . . . . 12  |-  ( w  =  W  ->  (
e  e.  dom  (
( w `  c
)  \  _I  )  <->  e  e.  dom  ( ( W `  c ) 
\  _I  ) ) )
122121notbid 294 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( -.  e  e.  dom  ( ( w `  c )  \  _I  ) 
<->  -.  e  e.  dom  ( ( W `  c )  \  _I  ) ) )
123122ralbidv 2733 . . . . . . . . . 10  |-  ( w  =  W  ->  ( A. c  e.  (
0..^ 0 )  -.  e  e.  dom  (
( w `  c
)  \  _I  )  <->  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( W `
 c )  \  _I  ) ) )
124117, 1233anbi23d 1287 . . . . . . . . 9  |-  ( w  =  W  ->  (
( 0  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  0 ) 
\  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( w `
 c )  \  _I  ) )  <->  ( 0  e.  ( 0..^ L )  /\  e  e. 
dom  ( ( W `
 0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( W `  c )  \  _I  ) ) ) )
125113, 124anbi12d 705 . . . . . . . 8  |-  ( w  =  W  ->  (
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( 0  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w ` 
0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) )  <->  ( (
( G  gsumg  W )  =  (  _I  |`  D )  /\  ( # `  W
)  =  L )  /\  ( 0  e.  ( 0..^ L )  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( W `  c )  \  _I  ) ) ) ) )
126125rspcev 3070 . . . . . . 7  |-  ( ( W  e. Word  T  /\  ( ( ( G 
gsumg  W )  =  (  _I  |`  D )  /\  ( # `  W
)  =  L )  /\  ( 0  e.  ( 0..^ L )  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( W `  c )  \  _I  ) ) ) )  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( 0  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w ` 
0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )
12797, 100, 108, 126syl12anc 1211 . . . . . 6  |-  ( (
ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) )  ->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( 0  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w ` 
0 )  \  _I  )  /\  A. c  e.  ( 0..^ 0 )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )
128 psgnunilem3.g . . . . . . . . . 10  |-  G  =  ( SymGrp `  D )
129 psgnunilem3.d . . . . . . . . . . 11  |-  ( ph  ->  D  e.  V )
130129ad2antrr 720 . . . . . . . . . 10  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  /\  (
x  e. Word  T  /\  ( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )  ->  D  e.  V )
131 simprl 750 . . . . . . . . . 10  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  /\  (
x  e. Word  T  /\  ( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )  ->  x  e. Word  T )
132 simpll 748 . . . . . . . . . . 11  |-  ( ( ( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) )  -> 
( G  gsumg  x )  =  (  _I  |`  D )
)
133132ad2antll 723 . . . . . . . . . 10  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  /\  (
x  e. Word  T  /\  ( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )  ->  ( G  gsumg  x )  =  (  _I  |`  D ) )
134 simplr 749 . . . . . . . . . . 11  |-  ( ( ( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) )  -> 
( # `  x )  =  L )
135134ad2antll 723 . . . . . . . . . 10  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  /\  (
x  e. Word  T  /\  ( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )  ->  ( # `  x
)  =  L )
136 simpr1 989 . . . . . . . . . . 11  |-  ( ( ( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) )  -> 
b  e.  ( 0..^ L ) )
137136ad2antll 723 . . . . . . . . . 10  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  /\  (
x  e. Word  T  /\  ( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )  ->  b  e.  ( 0..^ L ) )
138 simpr2 990 . . . . . . . . . . 11  |-  ( ( ( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) )  -> 
e  e.  dom  (
( x `  b
)  \  _I  )
)
139138ad2antll 723 . . . . . . . . . 10  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  /\  (
x  e. Word  T  /\  ( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )  ->  e  e.  dom  ( ( x `  b )  \  _I  ) )
140 simpr3 991 . . . . . . . . . . 11  |-  ( ( ( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) )  ->  A. d  e.  (
0..^ b )  -.  e  e.  dom  (
( x `  d
)  \  _I  )
)
141140ad2antll 723 . . . . . . . . . 10  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  /\  (
x  e. Word  T  /\  ( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )  ->  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) )
142 psgnunilem3.in . . . . . . . . . . . 12  |-  ( ph  ->  -.  E. x  e. Word  T ( ( # `  x )  =  ( L  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D ) ) )
143 fveq2 5688 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  ( # `
 x )  =  ( # `  y
) )
144143eqeq1d 2449 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  (
( # `  x )  =  ( L  - 
2 )  <->  ( # `  y
)  =  ( L  -  2 ) ) )
145 oveq2 6098 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  ( G  gsumg  x )  =  ( G  gsumg  y ) )
146145eqeq1d 2449 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  (
( G  gsumg  x )  =  (  _I  |`  D )  <->  ( G  gsumg  y )  =  (  _I  |`  D )
) )
147144, 146anbi12d 705 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( ( # `  x
)  =  ( L  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  <->  ( ( # `  y )  =  ( L  -  2 )  /\  ( G  gsumg  y )  =  (  _I  |`  D ) ) ) )
148147cbvrexv 2946 . . . . . . . . . . . 12  |-  ( E. x  e. Word  T ( ( # `  x
)  =  ( L  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
)  <->  E. y  e. Word  T
( ( # `  y
)  =  ( L  -  2 )  /\  ( G  gsumg  y )  =  (  _I  |`  D )
) )
149142, 148sylnib 304 . . . . . . . . . . 11  |-  ( ph  ->  -.  E. y  e. Word  T ( ( # `  y )  =  ( L  -  2 )  /\  ( G  gsumg  y )  =  (  _I  |`  D ) ) )
150149ad2antrr 720 . . . . . . . . . 10  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  /\  (
x  e. Word  T  /\  ( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )  ->  -.  E. y  e. Word  T ( ( # `  y )  =  ( L  -  2 )  /\  ( G  gsumg  y )  =  (  _I  |`  D ) ) )
151128, 17, 130, 131, 133, 135, 137, 139, 141, 150psgnunilem2 15994 . . . . . . . . 9  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  /\  (
x  e. Word  T  /\  ( ( ( G 
gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) ) )  ->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( b  +  1 )  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  ( b  +  1 ) )  \  _I  )  /\  A. c  e.  ( 0..^ ( b  +  1 ) )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) )
152151rexlimdvaa 2840 . . . . . . . 8  |-  ( (
ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) )  ->  ( E. x  e. Word  T ( ( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) )  ->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( b  +  1 )  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  ( b  +  1 ) )  \  _I  )  /\  A. c  e.  ( 0..^ ( b  +  1 ) )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
153152a2i 13 . . . . . . 7  |-  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  ->  E. x  e. Word  T ( ( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) )  ->  ( ( ph  /\  e  e.  dom  (
( W `  0
)  \  _I  )
)  ->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( b  +  1 )  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  ( b  +  1 ) )  \  _I  )  /\  A. c  e.  ( 0..^ ( b  +  1 ) )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
154153a1i 11 . . . . . 6  |-  ( b  e.  NN0  ->  ( ( ( ph  /\  e  e.  dom  ( ( W `
 0 )  \  _I  ) )  ->  E. x  e. Word  T ( ( ( G  gsumg  x )  =  (  _I  |`  D )  /\  ( # `  x
)  =  L )  /\  ( b  e.  ( 0..^ L )  /\  e  e.  dom  ( ( x `  b )  \  _I  )  /\  A. d  e.  ( 0..^ b )  -.  e  e.  dom  ( ( x `  d )  \  _I  ) ) ) )  ->  ( ( ph  /\  e  e.  dom  (
( W `  0
)  \  _I  )
)  ->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( b  +  1 )  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  ( b  +  1 ) )  \  _I  )  /\  A. c  e.  ( 0..^ ( b  +  1 ) )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) ) )
15537, 74, 85, 96, 127, 154nn0ind 10734 . . . . 5  |-  ( L  e.  NN0  ->  ( (
ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) )  ->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( L  e.  ( 0..^ L )  /\  e  e.  dom  ( ( w `  L )  \  _I  )  /\  A. c  e.  ( 0..^ L )  -.  e  e.  dom  ( ( w `  c )  \  _I  ) ) ) ) )
15626, 155mtoi 178 . . . 4  |-  ( L  e.  NN0  ->  -.  ( ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) ) )
157156con2i 120 . . 3  |-  ( (
ph  /\  e  e.  dom  ( ( W ` 
0 )  \  _I  ) )  ->  -.  L  e.  NN0 )
15821, 157exlimddv 1697 . 2  |-  ( ph  ->  -.  L  e.  NN0 )
1594, 158pm2.65i 173 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364   E.wex 1591    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714    \ cdif 3322   (/)c0 3634   class class class wbr 4289    _I cid 4627   dom cdm 4836   ran crn 4837    |` cres 4838   -->wf 5411   ` cfv 5415  (class class class)co 6090   0cc0 9278   1c1 9279    + caddc 9281    < clt 9414    - cmin 9591   NNcn 10318   2c2 10367   NN0cn0 10575  ..^cfzo 11544   #chash 12099  Word cword 12217    gsumg cgsu 14375   SymGrpcsymg 15875  pmTrspcpmtr 15940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-xor 1346  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-ot 3883  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-n0 10576  df-z 10643  df-uz 10858  df-fz 11434  df-fzo 11545  df-seq 11803  df-hash 12100  df-word 12225  df-concat 12227  df-s1 12228  df-substr 12229  df-splice 12230  df-s2 12471  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-tset 14253  df-0g 14376  df-gsum 14377  df-mnd 15411  df-submnd 15461  df-grp 15538  df-minusg 15539  df-subg 15671  df-symg 15876  df-pmtr 15941
This theorem is referenced by:  psgnunilem4  15996
  Copyright terms: Public domain W3C validator