MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnfn Structured version   Unicode version

Theorem psgnfn 16095
Description: Functionality and domain of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnfn.g  |-  G  =  ( SymGrp `  D )
psgnfn.b  |-  B  =  ( Base `  G
)
psgnfn.f  |-  F  =  { p  e.  B  |  dom  ( p  \  _I  )  e.  Fin }
psgnfn.n  |-  N  =  (pmSgn `  D )
Assertion
Ref Expression
psgnfn  |-  N  Fn  F
Distinct variable group:    B, p
Allowed substitution hints:    D( p)    F( p)    G( p)    N( p)

Proof of Theorem psgnfn
Dummy variables  s  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iotaex 5482 . 2  |-  ( iota s E. w  e. Word  ran  (pmTrsp `  D )
( x  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )  e.  _V
2 psgnfn.g . . 3  |-  G  =  ( SymGrp `  D )
3 psgnfn.b . . 3  |-  B  =  ( Base `  G
)
4 psgnfn.f . . 3  |-  F  =  { p  e.  B  |  dom  ( p  \  _I  )  e.  Fin }
5 eqid 2450 . . 3  |-  ran  (pmTrsp `  D )  =  ran  (pmTrsp `  D )
6 psgnfn.n . . 3  |-  N  =  (pmSgn `  D )
72, 3, 4, 5, 6psgnfval 16094 . 2  |-  N  =  ( x  e.  F  |->  ( iota s E. w  e. Word  ran  (pmTrsp `  D ) ( x  =  ( G  gsumg  w )  /\  s  =  (
-u 1 ^ ( # `
 w ) ) ) ) )
81, 7fnmpti 5623 1  |-  N  Fn  F
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1370    e. wcel 1757   E.wrex 2793   {crab 2796    \ cdif 3409    _I cid 4715   dom cdm 4924   ran crn 4925   iotacio 5463    Fn wfn 5497   ` cfv 5502  (class class class)co 6176   Fincfn 7396   1c1 9370   -ucneg 9683   ^cexp 11952   #chash 12190  Word cword 12309   Basecbs 14262    gsumg cgsu 14467   SymGrpcsymg 15970  pmTrspcpmtr 16035  pmSgncpsgn 16083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429  ax-rep 4487  ax-sep 4497  ax-nul 4505  ax-pow 4554  ax-pr 4615  ax-un 6458  ax-cnex 9425  ax-resscn 9426  ax-1cn 9427  ax-icn 9428  ax-addcl 9429  ax-addrcl 9430  ax-mulcl 9431  ax-mulrcl 9432  ax-mulcom 9433  ax-addass 9434  ax-mulass 9435  ax-distr 9436  ax-i2m1 9437  ax-1ne0 9438  ax-1rid 9439  ax-rnegex 9440  ax-rrecex 9441  ax-cnre 9442  ax-pre-lttri 9443  ax-pre-lttrn 9444  ax-pre-ltadd 9445  ax-pre-mulgt0 9446
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1702  df-eu 2263  df-mo 2264  df-clab 2436  df-cleq 2442  df-clel 2445  df-nfc 2598  df-ne 2643  df-nel 2644  df-ral 2797  df-rex 2798  df-reu 2799  df-rab 2801  df-v 3056  df-sbc 3271  df-csb 3373  df-dif 3415  df-un 3417  df-in 3419  df-ss 3426  df-pss 3428  df-nul 3722  df-if 3876  df-pw 3946  df-sn 3962  df-pr 3964  df-tp 3966  df-op 3968  df-uni 4176  df-int 4213  df-iun 4257  df-br 4377  df-opab 4435  df-mpt 4436  df-tr 4470  df-eprel 4716  df-id 4720  df-po 4725  df-so 4726  df-fr 4763  df-we 4765  df-ord 4806  df-on 4807  df-lim 4808  df-suc 4809  df-xp 4930  df-rel 4931  df-cnv 4932  df-co 4933  df-dm 4934  df-rn 4935  df-res 4936  df-ima 4937  df-iota 5465  df-fun 5504  df-fn 5505  df-f 5506  df-f1 5507  df-fo 5508  df-f1o 5509  df-fv 5510  df-riota 6137  df-ov 6179  df-oprab 6180  df-mpt2 6181  df-om 6563  df-1st 6663  df-2nd 6664  df-recs 6918  df-rdg 6952  df-1o 7006  df-oadd 7010  df-er 7187  df-en 7397  df-dom 7398  df-sdom 7399  df-fin 7400  df-pnf 9507  df-mnf 9508  df-xr 9509  df-ltxr 9510  df-le 9511  df-sub 9684  df-neg 9685  df-nn 10410  df-n0 10667  df-z 10734  df-uz 10949  df-fz 11525  df-fzo 11636  df-word 12317  df-slot 14266  df-base 14267  df-psgn 16085
This theorem is referenced by:  psgndmsubg  16096  psgneldm  16097  psgneldm2  16098  psgnval  16101  psgnghm  18105  psgnghm2  18106  zrhcofipsgn  18118  m1detdiag  18505
  Copyright terms: Public domain W3C validator