MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgneu Structured version   Unicode version

Theorem psgneu 16733
Description: A finitary permutation has exactly one parity. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnval.g  |-  G  =  ( SymGrp `  D )
psgnval.t  |-  T  =  ran  (pmTrsp `  D
)
psgnval.n  |-  N  =  (pmSgn `  D )
Assertion
Ref Expression
psgneu  |-  ( P  e.  dom  N  ->  E! s E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
Distinct variable groups:    w, s, G    N, s, w    P, s, w    T, s, w    D, s, w

Proof of Theorem psgneu
Dummy variables  t  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnval.g . . . . . . . . 9  |-  G  =  ( SymGrp `  D )
2 psgnval.n . . . . . . . . 9  |-  N  =  (pmSgn `  D )
3 eqid 2454 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
41, 2, 3psgneldm 16730 . . . . . . . 8  |-  ( P  e.  dom  N  <->  ( P  e.  ( Base `  G
)  /\  dom  ( P 
\  _I  )  e. 
Fin ) )
54simplbi 458 . . . . . . 7  |-  ( P  e.  dom  N  ->  P  e.  ( Base `  G ) )
61, 3elbasfv 14768 . . . . . . 7  |-  ( P  e.  ( Base `  G
)  ->  D  e.  _V )
75, 6syl 16 . . . . . 6  |-  ( P  e.  dom  N  ->  D  e.  _V )
8 psgnval.t . . . . . . 7  |-  T  =  ran  (pmTrsp `  D
)
91, 8, 2psgneldm2 16731 . . . . . 6  |-  ( D  e.  _V  ->  ( P  e.  dom  N  <->  E. w  e. Word  T P  =  ( G  gsumg  w ) ) )
107, 9syl 16 . . . . 5  |-  ( P  e.  dom  N  -> 
( P  e.  dom  N  <->  E. w  e. Word  T P  =  ( G  gsumg  w ) ) )
1110ibi 241 . . . 4  |-  ( P  e.  dom  N  ->  E. w  e. Word  T P  =  ( G  gsumg  w ) )
12 simpr 459 . . . . . . 7  |-  ( ( ( P  e.  dom  N  /\  w  e. Word  T
)  /\  P  =  ( G  gsumg  w ) )  ->  P  =  ( G  gsumg  w ) )
13 eqid 2454 . . . . . . 7  |-  ( -u
1 ^ ( # `  w ) )  =  ( -u 1 ^ ( # `  w
) )
14 ovex 6298 . . . . . . . 8  |-  ( -u
1 ^ ( # `  w ) )  e. 
_V
15 eqeq1 2458 . . . . . . . . 9  |-  ( s  =  ( -u 1 ^ ( # `  w
) )  ->  (
s  =  ( -u
1 ^ ( # `  w ) )  <->  ( -u 1 ^ ( # `  w
) )  =  (
-u 1 ^ ( # `
 w ) ) ) )
1615anbi2d 701 . . . . . . . 8  |-  ( s  =  ( -u 1 ^ ( # `  w
) )  ->  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  ( P  =  ( G  gsumg  w )  /\  ( -u 1 ^ ( # `  w
) )  =  (
-u 1 ^ ( # `
 w ) ) ) ) )
1714, 16spcev 3198 . . . . . . 7  |-  ( ( P  =  ( G 
gsumg  w )  /\  ( -u 1 ^ ( # `  w ) )  =  ( -u 1 ^ ( # `  w
) ) )  ->  E. s ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
1812, 13, 17sylancl 660 . . . . . 6  |-  ( ( ( P  e.  dom  N  /\  w  e. Word  T
)  /\  P  =  ( G  gsumg  w ) )  ->  E. s ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
1918ex 432 . . . . 5  |-  ( ( P  e.  dom  N  /\  w  e. Word  T )  ->  ( P  =  ( G  gsumg  w )  ->  E. s
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )
2019reximdva 2929 . . . 4  |-  ( P  e.  dom  N  -> 
( E. w  e. Word  T P  =  ( G  gsumg  w )  ->  E. w  e. Word  T E. s ( P  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )
2111, 20mpd 15 . . 3  |-  ( P  e.  dom  N  ->  E. w  e. Word  T E. s ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
22 rexcom4 3126 . . 3  |-  ( E. w  e. Word  T E. s ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  E. s E. w  e. Word  T ( P  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
2321, 22sylib 196 . 2  |-  ( P  e.  dom  N  ->  E. s E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
24 reeanv 3022 . . . 4  |-  ( E. w  e. Word  T E. x  e. Word  T (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  <-> 
( E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  E. x  e. Word  T ( P  =  ( G 
gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )
257ad2antrr 723 . . . . . . . 8  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  D  e.  _V )
26 simplrl 759 . . . . . . . 8  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  w  e. Word  T )
27 simplrr 760 . . . . . . . 8  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  x  e. Word  T )
28 simprll 761 . . . . . . . . 9  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  P  =  ( G  gsumg  w ) )
29 simprrl 763 . . . . . . . . 9  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  P  =  ( G  gsumg  x ) )
3028, 29eqtr3d 2497 . . . . . . . 8  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  ( G  gsumg  w )  =  ( G 
gsumg  x ) )
311, 8, 25, 26, 27, 30psgnuni 16726 . . . . . . 7  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  ( -u 1 ^ ( # `  w
) )  =  (
-u 1 ^ ( # `
 x ) ) )
32 simprlr 762 . . . . . . 7  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  s  =  ( -u 1 ^ ( # `
 w ) ) )
33 simprrr 764 . . . . . . 7  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  t  =  ( -u 1 ^ ( # `
 x ) ) )
3431, 32, 333eqtr4d 2505 . . . . . 6  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  s  =  t )
3534ex 432 . . . . 5  |-  ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T ) )  ->  ( (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  ->  s  =  t ) )
3635rexlimdvva 2953 . . . 4  |-  ( P  e.  dom  N  -> 
( E. w  e. Word  T E. x  e. Word  T
( ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  ->  s  =  t ) )
3724, 36syl5bir 218 . . 3  |-  ( P  e.  dom  N  -> 
( ( E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  E. x  e. Word  T ( P  =  ( G 
gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  ->  s  =  t ) )
3837alrimivv 1725 . 2  |-  ( P  e.  dom  N  ->  A. s A. t ( ( E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  E. x  e. Word  T ( P  =  ( G 
gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  ->  s  =  t ) )
39 eqeq1 2458 . . . . . 6  |-  ( s  =  t  ->  (
s  =  ( -u
1 ^ ( # `  w ) )  <->  t  =  ( -u 1 ^ ( # `
 w ) ) ) )
4039anbi2d 701 . . . . 5  |-  ( s  =  t  ->  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  ( P  =  ( G  gsumg  w )  /\  t  =  (
-u 1 ^ ( # `
 w ) ) ) ) )
4140rexbidv 2965 . . . 4  |-  ( s  =  t  ->  ( E. w  e. Word  T ( P  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  t  =  ( -u 1 ^ ( # `  w
) ) ) ) )
42 oveq2 6278 . . . . . . 7  |-  ( w  =  x  ->  ( G  gsumg  w )  =  ( G  gsumg  x ) )
4342eqeq2d 2468 . . . . . 6  |-  ( w  =  x  ->  ( P  =  ( G  gsumg  w )  <->  P  =  ( G  gsumg  x ) ) )
44 fveq2 5848 . . . . . . . 8  |-  ( w  =  x  ->  ( # `
 w )  =  ( # `  x
) )
4544oveq2d 6286 . . . . . . 7  |-  ( w  =  x  ->  ( -u 1 ^ ( # `  w ) )  =  ( -u 1 ^ ( # `  x
) ) )
4645eqeq2d 2468 . . . . . 6  |-  ( w  =  x  ->  (
t  =  ( -u
1 ^ ( # `  w ) )  <->  t  =  ( -u 1 ^ ( # `
 x ) ) ) )
4743, 46anbi12d 708 . . . . 5  |-  ( w  =  x  ->  (
( P  =  ( G  gsumg  w )  /\  t  =  ( -u 1 ^ ( # `  w
) ) )  <->  ( P  =  ( G  gsumg  x )  /\  t  =  (
-u 1 ^ ( # `
 x ) ) ) ) )
4847cbvrexv 3082 . . . 4  |-  ( E. w  e. Word  T ( P  =  ( G 
gsumg  w )  /\  t  =  ( -u 1 ^ ( # `  w
) ) )  <->  E. x  e. Word  T ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )
4941, 48syl6bb 261 . . 3  |-  ( s  =  t  ->  ( E. w  e. Word  T ( P  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  E. x  e. Word  T ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )
5049eu4 2336 . 2  |-  ( E! s E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  ( E. s E. w  e. Word  T
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  A. s A. t ( ( E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  E. x  e. Word  T ( P  =  ( G 
gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  ->  s  =  t ) ) )
5123, 38, 50sylanbrc 662 1  |-  ( P  e.  dom  N  ->  E! s E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367   A.wal 1396    = wceq 1398   E.wex 1617    e. wcel 1823   E!weu 2284   E.wrex 2805   _Vcvv 3106    \ cdif 3458    _I cid 4779   dom cdm 4988   ran crn 4989   ` cfv 5570  (class class class)co 6270   Fincfn 7509   1c1 9482   -ucneg 9797   ^cexp 12151   #chash 12390  Word cword 12521   Basecbs 14719    gsumg cgsu 14933   SymGrpcsymg 16604  pmTrspcpmtr 16668  pmSgncpsgn 16716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-xor 1363  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-ot 4025  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-tpos 6947  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-fz 11676  df-fzo 11800  df-seq 12093  df-exp 12152  df-hash 12391  df-word 12529  df-lsw 12530  df-concat 12531  df-s1 12532  df-substr 12533  df-splice 12534  df-reverse 12535  df-s2 12807  df-struct 14721  df-ndx 14722  df-slot 14723  df-base 14724  df-sets 14725  df-ress 14726  df-plusg 14800  df-tset 14806  df-0g 14934  df-gsum 14935  df-mre 15078  df-mrc 15079  df-acs 15081  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-mhm 16168  df-submnd 16169  df-grp 16259  df-minusg 16260  df-subg 16400  df-ghm 16467  df-gim 16509  df-oppg 16583  df-symg 16605  df-pmtr 16669  df-psgn 16718
This theorem is referenced by:  psgnvali  16735  psgnvalii  16736  psgnfieu  16745
  Copyright terms: Public domain W3C validator