MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserulm Structured version   Visualization version   Unicode version

Theorem pserulm 23456
Description: If  S is a region contained in a circle of radius  M  <  R, then the sequence of partial sums of the infinite series converges uniformly on  S. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pserf.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
pserf.f  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
pserf.a  |-  ( ph  ->  A : NN0 --> CC )
pserf.r  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
pserulm.h  |-  H  =  ( i  e.  NN0  |->  ( y  e.  S  |->  (  seq 0 (  +  ,  ( G `
 y ) ) `
 i ) ) )
pserulm.m  |-  ( ph  ->  M  e.  RR )
pserulm.l  |-  ( ph  ->  M  <  R )
pserulm.y  |-  ( ph  ->  S  C_  ( `' abs " ( 0 [,] M ) ) )
Assertion
Ref Expression
pserulm  |-  ( ph  ->  H ( ~~> u `  S ) F )
Distinct variable groups:    j, n, r, x, y, A    i,
j, y, H    i, M, j, y    x, i, r    i, G, j, r, y    S, i, j, y    ph, i,
j, y
Allowed substitution hints:    ph( x, n, r)    A( i)    R( x, y, i, j, n, r)    S( x, n, r)    F( x, y, i, j, n, r)    G( x, n)    H( x, n, r)    M( x, n, r)

Proof of Theorem pserulm
Dummy variables  k  m  w  z  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pserulm.y . . . . . 6  |-  ( ph  ->  S  C_  ( `' abs " ( 0 [,] M ) ) )
21adantr 472 . . . . 5  |-  ( (
ph  /\  M  <  0 )  ->  S  C_  ( `' abs " (
0 [,] M ) ) )
3 0xr 9705 . . . . . . . . 9  |-  0  e.  RR*
4 pserulm.m . . . . . . . . . 10  |-  ( ph  ->  M  e.  RR )
54rexrd 9708 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR* )
6 icc0 11709 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  M  e.  RR* )  ->  (
( 0 [,] M
)  =  (/)  <->  M  <  0 ) )
73, 5, 6sylancr 676 . . . . . . . 8  |-  ( ph  ->  ( ( 0 [,] M )  =  (/)  <->  M  <  0 ) )
87biimpar 493 . . . . . . 7  |-  ( (
ph  /\  M  <  0 )  ->  (
0 [,] M )  =  (/) )
98imaeq2d 5174 . . . . . 6  |-  ( (
ph  /\  M  <  0 )  ->  ( `' abs " ( 0 [,] M ) )  =  ( `' abs "
(/) ) )
10 ima0 5189 . . . . . 6  |-  ( `' abs " (/) )  =  (/)
119, 10syl6eq 2521 . . . . 5  |-  ( (
ph  /\  M  <  0 )  ->  ( `' abs " ( 0 [,] M ) )  =  (/) )
122, 11sseqtrd 3454 . . . 4  |-  ( (
ph  /\  M  <  0 )  ->  S  C_  (/) )
13 ss0 3768 . . . 4  |-  ( S 
C_  (/)  ->  S  =  (/) )
1412, 13syl 17 . . 3  |-  ( (
ph  /\  M  <  0 )  ->  S  =  (/) )
15 nn0uz 11217 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
16 0zd 10973 . . . 4  |-  ( ph  ->  0  e.  ZZ )
17 0zd 10973 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  S )  ->  0  e.  ZZ )
18 pserf.g . . . . . . . . . . . 12  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
19 pserf.a . . . . . . . . . . . . 13  |-  ( ph  ->  A : NN0 --> CC )
2019adantr 472 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  A : NN0 --> CC )
21 cnvimass 5194 . . . . . . . . . . . . . . 15  |-  ( `' abs " ( 0 [,] M ) ) 
C_  dom  abs
22 absf 13477 . . . . . . . . . . . . . . . 16  |-  abs : CC
--> RR
2322fdmi 5746 . . . . . . . . . . . . . . 15  |-  dom  abs  =  CC
2421, 23sseqtri 3450 . . . . . . . . . . . . . 14  |-  ( `' abs " ( 0 [,] M ) ) 
C_  CC
251, 24syl6ss 3430 . . . . . . . . . . . . 13  |-  ( ph  ->  S  C_  CC )
2625sselda 3418 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  y  e.  CC )
2718, 20, 26psergf 23446 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  S )  ->  ( G `  y ) : NN0 --> CC )
2827ffvelrnda 6037 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  S )  /\  j  e.  NN0 )  ->  (
( G `  y
) `  j )  e.  CC )
2915, 17, 28serf 12279 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  S )  ->  seq 0 (  +  , 
( G `  y
) ) : NN0 --> CC )
3029ffvelrnda 6037 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  S )  /\  i  e.  NN0 )  ->  (  seq 0 (  +  , 
( G `  y
) ) `  i
)  e.  CC )
3130an32s 821 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  S )  ->  (  seq 0 (  +  , 
( G `  y
) ) `  i
)  e.  CC )
32 eqid 2471 . . . . . . 7  |-  ( y  e.  S  |->  (  seq 0 (  +  , 
( G `  y
) ) `  i
) )  =  ( y  e.  S  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) )
3331, 32fmptd 6061 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  S  |->  (  seq 0 (  +  , 
( G `  y
) ) `  i
) ) : S --> CC )
34 cnex 9638 . . . . . . 7  |-  CC  e.  _V
35 ssexg 4542 . . . . . . . . 9  |-  ( ( S  C_  CC  /\  CC  e.  _V )  ->  S  e.  _V )
3625, 34, 35sylancl 675 . . . . . . . 8  |-  ( ph  ->  S  e.  _V )
3736adantr 472 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN0 )  ->  S  e.  _V )
38 elmapg 7503 . . . . . . 7  |-  ( ( CC  e.  _V  /\  S  e.  _V )  ->  ( ( y  e.  S  |->  (  seq 0
(  +  ,  ( G `  y ) ) `  i ) )  e.  ( CC 
^m  S )  <->  ( y  e.  S  |->  (  seq 0 (  +  , 
( G `  y
) ) `  i
) ) : S --> CC ) )
3934, 37, 38sylancr 676 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( (
y  e.  S  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) )  e.  ( CC  ^m  S
)  <->  ( y  e.  S  |->  (  seq 0
(  +  ,  ( G `  y ) ) `  i ) ) : S --> CC ) )
4033, 39mpbird 240 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  S  |->  (  seq 0 (  +  , 
( G `  y
) ) `  i
) )  e.  ( CC  ^m  S ) )
41 pserulm.h . . . . 5  |-  H  =  ( i  e.  NN0  |->  ( y  e.  S  |->  (  seq 0 (  +  ,  ( G `
 y ) ) `
 i ) ) )
4240, 41fmptd 6061 . . . 4  |-  ( ph  ->  H : NN0 --> ( CC 
^m  S ) )
43 eqidd 2472 . . . . . 6  |-  ( ( ( ph  /\  y  e.  S )  /\  j  e.  NN0 )  ->  (
( G `  y
) `  j )  =  ( ( G `
 y ) `  j ) )
44 pserf.r . . . . . . 7  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
451sselda 3418 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  S )  ->  y  e.  ( `' abs " (
0 [,] M ) ) )
46 ffn 5739 . . . . . . . . . . . . . 14  |-  ( abs
: CC --> RR  ->  abs 
Fn  CC )
47 elpreima 6017 . . . . . . . . . . . . . 14  |-  ( abs 
Fn  CC  ->  ( y  e.  ( `' abs " ( 0 [,] M
) )  <->  ( y  e.  CC  /\  ( abs `  y )  e.  ( 0 [,] M ) ) ) )
4822, 46, 47mp2b 10 . . . . . . . . . . . . 13  |-  ( y  e.  ( `' abs " ( 0 [,] M
) )  <->  ( y  e.  CC  /\  ( abs `  y )  e.  ( 0 [,] M ) ) )
4945, 48sylib 201 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  (
y  e.  CC  /\  ( abs `  y )  e.  ( 0 [,] M ) ) )
5049simprd 470 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  S )  ->  ( abs `  y )  e.  ( 0 [,] M
) )
51 0re 9661 . . . . . . . . . . . 12  |-  0  e.  RR
524adantr 472 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  M  e.  RR )
53 elicc2 11724 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  M  e.  RR )  ->  ( ( abs `  y
)  e.  ( 0 [,] M )  <->  ( ( abs `  y )  e.  RR  /\  0  <_ 
( abs `  y
)  /\  ( abs `  y )  <_  M
) ) )
5451, 52, 53sylancr 676 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  S )  ->  (
( abs `  y
)  e.  ( 0 [,] M )  <->  ( ( abs `  y )  e.  RR  /\  0  <_ 
( abs `  y
)  /\  ( abs `  y )  <_  M
) ) )
5550, 54mpbid 215 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  S )  ->  (
( abs `  y
)  e.  RR  /\  0  <_  ( abs `  y
)  /\  ( abs `  y )  <_  M
) )
5655simp1d 1042 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  S )  ->  ( abs `  y )  e.  RR )
5756rexrd 9708 . . . . . . . 8  |-  ( (
ph  /\  y  e.  S )  ->  ( abs `  y )  e. 
RR* )
585adantr 472 . . . . . . . 8  |-  ( (
ph  /\  y  e.  S )  ->  M  e.  RR* )
59 iccssxr 11742 . . . . . . . . . 10  |-  ( 0 [,] +oo )  C_  RR*
6018, 19, 44radcnvcl 23451 . . . . . . . . . 10  |-  ( ph  ->  R  e.  ( 0 [,] +oo ) )
6159, 60sseldi 3416 . . . . . . . . 9  |-  ( ph  ->  R  e.  RR* )
6261adantr 472 . . . . . . . 8  |-  ( (
ph  /\  y  e.  S )  ->  R  e.  RR* )
6355simp3d 1044 . . . . . . . 8  |-  ( (
ph  /\  y  e.  S )  ->  ( abs `  y )  <_  M )
64 pserulm.l . . . . . . . . 9  |-  ( ph  ->  M  <  R )
6564adantr 472 . . . . . . . 8  |-  ( (
ph  /\  y  e.  S )  ->  M  <  R )
6657, 58, 62, 63, 65xrlelttrd 11480 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  ( abs `  y )  < 
R )
6718, 20, 44, 26, 66radcnvlt2 23453 . . . . . 6  |-  ( (
ph  /\  y  e.  S )  ->  seq 0 (  +  , 
( G `  y
) )  e.  dom  ~~>  )
6815, 17, 43, 28, 67isumcl 13899 . . . . 5  |-  ( (
ph  /\  y  e.  S )  ->  sum_ j  e.  NN0  ( ( G `
 y ) `  j )  e.  CC )
69 pserf.f . . . . 5  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
7068, 69fmptd 6061 . . . 4  |-  ( ph  ->  F : S --> CC )
7115, 16, 42, 70ulm0 23425 . . 3  |-  ( (
ph  /\  S  =  (/) )  ->  H ( ~~> u `  S ) F )
7214, 71syldan 478 . 2  |-  ( (
ph  /\  M  <  0 )  ->  H
( ~~> u `  S
) F )
73 simpr 468 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  e.  NN0 )
7473, 15syl6eleq 2559 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  e.  ( ZZ>= `  0 )
)
75 elfznn0 11913 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... i )  ->  k  e.  NN0 )
7675adantl 473 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  k  e.  NN0 )
7736ad2antrr 740 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  S  e.  _V )
78 mptexg 6151 . . . . . . . . . . 11  |-  ( S  e.  _V  ->  (
y  e.  S  |->  ( ( G `  y
) `  k )
)  e.  _V )
7977, 78syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  (
y  e.  S  |->  ( ( G `  y
) `  k )
)  e.  _V )
80 fveq2 5879 . . . . . . . . . . . . . 14  |-  ( w  =  y  ->  ( G `  w )  =  ( G `  y ) )
8180fveq1d 5881 . . . . . . . . . . . . 13  |-  ( w  =  y  ->  (
( G `  w
) `  m )  =  ( ( G `
 y ) `  m ) )
8281cbvmptv 4488 . . . . . . . . . . . 12  |-  ( w  e.  S  |->  ( ( G `  w ) `
 m ) )  =  ( y  e.  S  |->  ( ( G `
 y ) `  m ) )
83 fveq2 5879 . . . . . . . . . . . . 13  |-  ( m  =  k  ->  (
( G `  y
) `  m )  =  ( ( G `
 y ) `  k ) )
8483mpteq2dv 4483 . . . . . . . . . . . 12  |-  ( m  =  k  ->  (
y  e.  S  |->  ( ( G `  y
) `  m )
)  =  ( y  e.  S  |->  ( ( G `  y ) `
 k ) ) )
8582, 84syl5eq 2517 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
w  e.  S  |->  ( ( G `  w
) `  m )
)  =  ( y  e.  S  |->  ( ( G `  y ) `
 k ) ) )
86 eqid 2471 . . . . . . . . . . 11  |-  ( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `
 m ) ) )  =  ( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `
 m ) ) )
8785, 86fvmptg 5961 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  ( y  e.  S  |->  ( ( G `  y ) `  k
) )  e.  _V )  ->  ( ( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `
 m ) ) ) `  k )  =  ( y  e.  S  |->  ( ( G `
 y ) `  k ) ) )
8876, 79, 87syl2anc 673 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  (
( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `  m
) ) ) `  k )  =  ( y  e.  S  |->  ( ( G `  y
) `  k )
) )
8937, 74, 88seqof 12308 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN0 )  ->  (  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `
 m ) ) ) ) `  i
)  =  ( y  e.  S  |->  (  seq 0 (  +  , 
( G `  y
) ) `  i
) ) )
9089eqcomd 2477 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  S  |->  (  seq 0 (  +  , 
( G `  y
) ) `  i
) )  =  (  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `
 m ) ) ) ) `  i
) )
9190mpteq2dva 4482 . . . . . 6  |-  ( ph  ->  ( i  e.  NN0  |->  ( y  e.  S  |->  (  seq 0 (  +  ,  ( G `
 y ) ) `
 i ) ) )  =  ( i  e.  NN0  |->  (  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `
 m ) ) ) ) `  i
) ) )
92 0z 10972 . . . . . . . . 9  |-  0  e.  ZZ
93 seqfn 12263 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `
 m ) ) ) )  Fn  ( ZZ>=
`  0 ) )
9492, 93ax-mp 5 . . . . . . . 8  |-  seq 0
(  oF  +  ,  ( m  e. 
NN0  |->  ( w  e.  S  |->  ( ( G `
 w ) `  m ) ) ) )  Fn  ( ZZ>= ` 
0 )
9515fneq2i 5681 . . . . . . . 8  |-  (  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `
 m ) ) ) )  Fn  NN0  <->  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `
 m ) ) ) )  Fn  ( ZZ>=
`  0 ) )
9694, 95mpbir 214 . . . . . . 7  |-  seq 0
(  oF  +  ,  ( m  e. 
NN0  |->  ( w  e.  S  |->  ( ( G `
 w ) `  m ) ) ) )  Fn  NN0
97 dffn5 5924 . . . . . . 7  |-  (  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `
 m ) ) ) )  Fn  NN0  <->  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `
 m ) ) ) )  =  ( i  e.  NN0  |->  (  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `
 m ) ) ) ) `  i
) ) )
9896, 97mpbi 213 . . . . . 6  |-  seq 0
(  oF  +  ,  ( m  e. 
NN0  |->  ( w  e.  S  |->  ( ( G `
 w ) `  m ) ) ) )  =  ( i  e.  NN0  |->  (  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `
 m ) ) ) ) `  i
) )
9991, 41, 983eqtr4g 2530 . . . . 5  |-  ( ph  ->  H  =  seq 0
(  oF  +  ,  ( m  e. 
NN0  |->  ( w  e.  S  |->  ( ( G `
 w ) `  m ) ) ) ) )
10099adantr 472 . . . 4  |-  ( (
ph  /\  0  <_  M )  ->  H  =  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `
 m ) ) ) ) )
101 0zd 10973 . . . . 5  |-  ( (
ph  /\  0  <_  M )  ->  0  e.  ZZ )
10236adantr 472 . . . . 5  |-  ( (
ph  /\  0  <_  M )  ->  S  e.  _V )
10319adantr 472 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  S )  ->  A : NN0 --> CC )
10425sselda 3418 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  S )  ->  w  e.  CC )
10518, 103, 104psergf 23446 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  S )  ->  ( G `  w ) : NN0 --> CC )
106105ffvelrnda 6037 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  S )  /\  m  e.  NN0 )  ->  (
( G `  w
) `  m )  e.  CC )
107106an32s 821 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  w  e.  S )  ->  (
( G `  w
) `  m )  e.  CC )
108 eqid 2471 . . . . . . . . 9  |-  ( w  e.  S  |->  ( ( G `  w ) `
 m ) )  =  ( w  e.  S  |->  ( ( G `
 w ) `  m ) )
109107, 108fmptd 6061 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( w  e.  S  |->  ( ( G `  w ) `
 m ) ) : S --> CC )
11036adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN0 )  ->  S  e.  _V )
111 elmapg 7503 . . . . . . . . 9  |-  ( ( CC  e.  _V  /\  S  e.  _V )  ->  ( ( w  e.  S  |->  ( ( G `
 w ) `  m ) )  e.  ( CC  ^m  S
)  <->  ( w  e.  S  |->  ( ( G `
 w ) `  m ) ) : S --> CC ) )
11234, 110, 111sylancr 676 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
w  e.  S  |->  ( ( G `  w
) `  m )
)  e.  ( CC 
^m  S )  <->  ( w  e.  S  |->  ( ( G `  w ) `
 m ) ) : S --> CC ) )
113109, 112mpbird 240 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( w  e.  S  |->  ( ( G `  w ) `
 m ) )  e.  ( CC  ^m  S ) )
114113, 86fmptd 6061 . . . . . 6  |-  ( ph  ->  ( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `  m
) ) ) : NN0 --> ( CC  ^m  S ) )
115114adantr 472 . . . . 5  |-  ( (
ph  /\  0  <_  M )  ->  ( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `
 w ) `  m ) ) ) : NN0 --> ( CC 
^m  S ) )
116 fex 6155 . . . . . . . 8  |-  ( ( abs : CC --> RR  /\  CC  e.  _V )  ->  abs  e.  _V )
11722, 34, 116mp2an 686 . . . . . . 7  |-  abs  e.  _V
118 fvex 5889 . . . . . . 7  |-  ( G `
 M )  e. 
_V
119117, 118coex 6764 . . . . . 6  |-  ( abs 
o.  ( G `  M ) )  e. 
_V
120119a1i 11 . . . . 5  |-  ( (
ph  /\  0  <_  M )  ->  ( abs  o.  ( G `  M
) )  e.  _V )
12119adantr 472 . . . . . . . 8  |-  ( (
ph  /\  0  <_  M )  ->  A : NN0
--> CC )
1224adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  0  <_  M )  ->  M  e.  RR )
123122recnd 9687 . . . . . . . 8  |-  ( (
ph  /\  0  <_  M )  ->  M  e.  CC )
12418, 121, 123psergf 23446 . . . . . . 7  |-  ( (
ph  /\  0  <_  M )  ->  ( G `  M ) : NN0 --> CC )
125 fco 5751 . . . . . . 7  |-  ( ( abs : CC --> RR  /\  ( G `  M ) : NN0 --> CC )  ->  ( abs  o.  ( G `  M ) ) : NN0 --> RR )
12622, 124, 125sylancr 676 . . . . . 6  |-  ( (
ph  /\  0  <_  M )  ->  ( abs  o.  ( G `  M
) ) : NN0 --> RR )
127126ffvelrnda 6037 . . . . 5  |-  ( ( ( ph  /\  0  <_  M )  /\  k  e.  NN0 )  ->  (
( abs  o.  ( G `  M )
) `  k )  e.  RR )
12825ad2antrr 740 . . . . . . . . . . 11  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  S  C_  CC )
129 simprr 774 . . . . . . . . . . 11  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  z  e.  S )
130128, 129sseldd 3419 . . . . . . . . . 10  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  z  e.  CC )
131 simprl 772 . . . . . . . . . 10  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  k  e.  NN0 )
132130, 131expcld 12454 . . . . . . . . 9  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( z ^ k )  e.  CC )
133132abscld 13575 . . . . . . . 8  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( abs `  ( z ^ k
) )  e.  RR )
134123adantr 472 . . . . . . . . . 10  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  M  e.  CC )
135134, 131expcld 12454 . . . . . . . . 9  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( M ^ k )  e.  CC )
136135abscld 13575 . . . . . . . 8  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( abs `  ( M ^ k
) )  e.  RR )
13719ad2antrr 740 . . . . . . . . . 10  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  A : NN0
--> CC )
138137, 131ffvelrnd 6038 . . . . . . . . 9  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( A `  k )  e.  CC )
139138abscld 13575 . . . . . . . 8  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( abs `  ( A `  k
) )  e.  RR )
140138absge0d 13583 . . . . . . . 8  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  0  <_  ( abs `  ( A `
 k ) ) )
141130abscld 13575 . . . . . . . . . 10  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( abs `  z )  e.  RR )
1424ad2antrr 740 . . . . . . . . . 10  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  M  e.  RR )
143130absge0d 13583 . . . . . . . . . 10  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  0  <_  ( abs `  z ) )
14463ralrimiva 2809 . . . . . . . . . . . 12  |-  ( ph  ->  A. y  e.  S  ( abs `  y )  <_  M )
145144ad2antrr 740 . . . . . . . . . . 11  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  A. y  e.  S  ( abs `  y )  <_  M
)
146 fveq2 5879 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  ( abs `  y )  =  ( abs `  z
) )
147146breq1d 4405 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
( abs `  y
)  <_  M  <->  ( abs `  z )  <_  M
) )
148147rspcv 3132 . . . . . . . . . . 11  |-  ( z  e.  S  ->  ( A. y  e.  S  ( abs `  y )  <_  M  ->  ( abs `  z )  <_  M ) )
149129, 145, 148sylc 61 . . . . . . . . . 10  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( abs `  z )  <_  M
)
150 leexp1a 12369 . . . . . . . . . 10  |-  ( ( ( ( abs `  z
)  e.  RR  /\  M  e.  RR  /\  k  e.  NN0 )  /\  (
0  <_  ( abs `  z )  /\  ( abs `  z )  <_  M ) )  -> 
( ( abs `  z
) ^ k )  <_  ( M ^
k ) )
151141, 142, 131, 143, 149, 150syl32anc 1300 . . . . . . . . 9  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( ( abs `  z ) ^
k )  <_  ( M ^ k ) )
152130, 131absexpd 13591 . . . . . . . . 9  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( abs `  ( z ^ k
) )  =  ( ( abs `  z
) ^ k ) )
153134, 131absexpd 13591 . . . . . . . . . 10  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( abs `  ( M ^ k
) )  =  ( ( abs `  M
) ^ k ) )
154 absid 13436 . . . . . . . . . . . . 13  |-  ( ( M  e.  RR  /\  0  <_  M )  -> 
( abs `  M
)  =  M )
1554, 154sylan 479 . . . . . . . . . . . 12  |-  ( (
ph  /\  0  <_  M )  ->  ( abs `  M )  =  M )
156155adantr 472 . . . . . . . . . . 11  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( abs `  M )  =  M )
157156oveq1d 6323 . . . . . . . . . 10  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( ( abs `  M ) ^
k )  =  ( M ^ k ) )
158153, 157eqtrd 2505 . . . . . . . . 9  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( abs `  ( M ^ k
) )  =  ( M ^ k ) )
159151, 152, 1583brtr4d 4426 . . . . . . . 8  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( abs `  ( z ^ k
) )  <_  ( abs `  ( M ^
k ) ) )
160133, 136, 139, 140, 159lemul2ad 10569 . . . . . . 7  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( ( abs `  ( A `  k ) )  x.  ( abs `  (
z ^ k ) ) )  <_  (
( abs `  ( A `  k )
)  x.  ( abs `  ( M ^ k
) ) ) )
161138, 132absmuld 13593 . . . . . . 7  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( abs `  ( ( A `  k )  x.  (
z ^ k ) ) )  =  ( ( abs `  ( A `  k )
)  x.  ( abs `  ( z ^ k
) ) ) )
162138, 135absmuld 13593 . . . . . . 7  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( abs `  ( ( A `  k )  x.  ( M ^ k ) ) )  =  ( ( abs `  ( A `
 k ) )  x.  ( abs `  ( M ^ k ) ) ) )
163160, 161, 1623brtr4d 4426 . . . . . 6  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( abs `  ( ( A `  k )  x.  (
z ^ k ) ) )  <_  ( abs `  ( ( A `
 k )  x.  ( M ^ k
) ) ) )
16436ad2antrr 740 . . . . . . . . . . 11  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  S  e.  _V )
165164, 78syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( y  e.  S  |->  ( ( G `  y ) `
 k ) )  e.  _V )
166131, 165, 87syl2anc 673 . . . . . . . . 9  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( (
m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `
 m ) ) ) `  k )  =  ( y  e.  S  |->  ( ( G `
 y ) `  k ) ) )
167166fveq1d 5881 . . . . . . . 8  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( (
( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `  m
) ) ) `  k ) `  z
)  =  ( ( y  e.  S  |->  ( ( G `  y
) `  k )
) `  z )
)
168 fveq2 5879 . . . . . . . . . . 11  |-  ( y  =  z  ->  ( G `  y )  =  ( G `  z ) )
169168fveq1d 5881 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( G `  y
) `  k )  =  ( ( G `
 z ) `  k ) )
170 eqid 2471 . . . . . . . . . 10  |-  ( y  e.  S  |->  ( ( G `  y ) `
 k ) )  =  ( y  e.  S  |->  ( ( G `
 y ) `  k ) )
171 fvex 5889 . . . . . . . . . 10  |-  ( ( G `  z ) `
 k )  e. 
_V
172169, 170, 171fvmpt 5963 . . . . . . . . 9  |-  ( z  e.  S  ->  (
( y  e.  S  |->  ( ( G `  y ) `  k
) ) `  z
)  =  ( ( G `  z ) `
 k ) )
173172ad2antll 743 . . . . . . . 8  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( (
y  e.  S  |->  ( ( G `  y
) `  k )
) `  z )  =  ( ( G `
 z ) `  k ) )
17418pserval2 23445 . . . . . . . . 9  |-  ( ( z  e.  CC  /\  k  e.  NN0 )  -> 
( ( G `  z ) `  k
)  =  ( ( A `  k )  x.  ( z ^
k ) ) )
175130, 131, 174syl2anc 673 . . . . . . . 8  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( ( G `  z ) `  k )  =  ( ( A `  k
)  x.  ( z ^ k ) ) )
176167, 173, 1753eqtrd 2509 . . . . . . 7  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( (
( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `  m
) ) ) `  k ) `  z
)  =  ( ( A `  k )  x.  ( z ^
k ) ) )
177176fveq2d 5883 . . . . . 6  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( abs `  ( ( ( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `
 m ) ) ) `  k ) `
 z ) )  =  ( abs `  (
( A `  k
)  x.  ( z ^ k ) ) ) )
178124adantr 472 . . . . . . . 8  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( G `  M ) : NN0 --> CC )
179 fvco3 5957 . . . . . . . 8  |-  ( ( ( G `  M
) : NN0 --> CC  /\  k  e.  NN0 )  -> 
( ( abs  o.  ( G `  M ) ) `  k )  =  ( abs `  (
( G `  M
) `  k )
) )
180178, 131, 179syl2anc 673 . . . . . . 7  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( ( abs  o.  ( G `  M ) ) `  k )  =  ( abs `  ( ( G `  M ) `
 k ) ) )
18118pserval2 23445 . . . . . . . . 9  |-  ( ( M  e.  CC  /\  k  e.  NN0 )  -> 
( ( G `  M ) `  k
)  =  ( ( A `  k )  x.  ( M ^
k ) ) )
182134, 131, 181syl2anc 673 . . . . . . . 8  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( ( G `  M ) `  k )  =  ( ( A `  k
)  x.  ( M ^ k ) ) )
183182fveq2d 5883 . . . . . . 7  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( abs `  ( ( G `  M ) `  k
) )  =  ( abs `  ( ( A `  k )  x.  ( M ^
k ) ) ) )
184180, 183eqtrd 2505 . . . . . 6  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( ( abs  o.  ( G `  M ) ) `  k )  =  ( abs `  ( ( A `  k )  x.  ( M ^
k ) ) ) )
185163, 177, 1843brtr4d 4426 . . . . 5  |-  ( ( ( ph  /\  0  <_  M )  /\  (
k  e.  NN0  /\  z  e.  S )
)  ->  ( abs `  ( ( ( m  e.  NN0  |->  ( w  e.  S  |->  ( ( G `  w ) `
 m ) ) ) `  k ) `
 z ) )  <_  ( ( abs 
o.  ( G `  M ) ) `  k ) )
18664adantr 472 . . . . . . . 8  |-  ( (
ph  /\  0  <_  M )  ->  M  <  R )
187155, 186eqbrtrd 4416 . . . . . . 7  |-  ( (
ph  /\  0  <_  M )  ->  ( abs `  M )  <  R
)
188 id 22 . . . . . . . . 9  |-  ( i  =  m  ->  i  =  m )
189 fveq2 5879 . . . . . . . . . 10  |-  ( i  =  m  ->  (
( G `  M
) `  i )  =  ( ( G `
 M ) `  m ) )
190189fveq2d 5883 . . . . . . . . 9  |-  ( i  =  m  ->  ( abs `  ( ( G `
 M ) `  i ) )  =  ( abs `  (
( G `  M
) `  m )
) )
191188, 190oveq12d 6326 . . . . . . . 8  |-  ( i  =  m  ->  (
i  x.  ( abs `  ( ( G `  M ) `  i
) ) )  =  ( m  x.  ( abs `  ( ( G `
 M ) `  m ) ) ) )
192191cbvmptv 4488 . . . . . . 7  |-  ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  M
) `  i )
) ) )  =  ( m  e.  NN0  |->  ( m  x.  ( abs `  ( ( G `
 M ) `  m ) ) ) )
19318, 121, 44, 123, 187, 192radcnvlt1 23452 . . . . . 6  |-  ( (
ph  /\  0  <_  M )  ->  (  seq 0 (  +  , 
( i  e.  NN0  |->  ( i  x.  ( abs `  ( ( G `
 M ) `  i ) ) ) ) )  e.  dom  ~~>  /\ 
seq 0 (  +  ,  ( abs  o.  ( G `  M ) ) )  e.  dom  ~~>  ) )
194193simprd 470 . . . . 5  |-  ( (
ph  /\  0  <_  M )  ->  seq 0
(  +  ,  ( abs  o.  ( G `
 M ) ) )  e.  dom  ~~>  )
19515, 101, 102, 115, 120, 127, 185, 194mtest 23438 . . . 4  |-  ( (
ph  /\  0  <_  M )  ->  seq 0
(  oF  +  ,  ( m  e. 
NN0  |->  ( w  e.  S  |->  ( ( G `
 w ) `  m ) ) ) )  e.  dom  ( ~~> u `  S )
)
196100, 195eqeltrd 2549 . . 3  |-  ( (
ph  /\  0  <_  M )  ->  H  e.  dom  ( ~~> u `  S
) )
197 eldmg 5035 . . . . . 6  |-  ( H  e.  dom  ( ~~> u `  S )  ->  ( H  e.  dom  ( ~~> u `  S )  <->  E. f  H ( ~~> u `  S ) f ) )
198197ibi 249 . . . . 5  |-  ( H  e.  dom  ( ~~> u `  S )  ->  E. f  H ( ~~> u `  S ) f )
199 simpr 468 . . . . . . . 8  |-  ( (
ph  /\  H ( ~~> u `  S )
f )  ->  H
( ~~> u `  S
) f )
200 ulmcl 23415 . . . . . . . . . . 11  |-  ( H ( ~~> u `  S
) f  ->  f : S --> CC )
201200adantl 473 . . . . . . . . . 10  |-  ( (
ph  /\  H ( ~~> u `  S )
f )  ->  f : S --> CC )
202201feqmptd 5932 . . . . . . . . 9  |-  ( (
ph  /\  H ( ~~> u `  S )
f )  ->  f  =  ( y  e.  S  |->  ( f `  y ) ) )
203 0zd 10973 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  H
( ~~> u `  S
) f )  /\  y  e.  S )  ->  0  e.  ZZ )
204 eqidd 2472 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  H ( ~~> u `  S ) f )  /\  y  e.  S
)  /\  j  e.  NN0 )  ->  ( ( G `  y ) `  j )  =  ( ( G `  y
) `  j )
)
20527adantlr 729 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  H
( ~~> u `  S
) f )  /\  y  e.  S )  ->  ( G `  y
) : NN0 --> CC )
206205ffvelrnda 6037 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  H ( ~~> u `  S ) f )  /\  y  e.  S
)  /\  j  e.  NN0 )  ->  ( ( G `  y ) `  j )  e.  CC )
20742ad2antrr 740 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  H
( ~~> u `  S
) f )  /\  y  e.  S )  ->  H : NN0 --> ( CC 
^m  S ) )
208 simpr 468 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  H
( ~~> u `  S
) f )  /\  y  e.  S )  ->  y  e.  S )
209 seqex 12253 . . . . . . . . . . . . . 14  |-  seq 0
(  +  ,  ( G `  y ) )  e.  _V
210209a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  H
( ~~> u `  S
) f )  /\  y  e.  S )  ->  seq 0 (  +  ,  ( G `  y ) )  e. 
_V )
211 simpr 468 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  H ( ~~> u `  S ) f )  /\  y  e.  S
)  /\  i  e.  NN0 )  ->  i  e.  NN0 )
21236ad3antrrr 744 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  H ( ~~> u `  S ) f )  /\  y  e.  S
)  /\  i  e.  NN0 )  ->  S  e.  _V )
213 mptexg 6151 . . . . . . . . . . . . . . . . 17  |-  ( S  e.  _V  ->  (
y  e.  S  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) )  e. 
_V )
214212, 213syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  H ( ~~> u `  S ) f )  /\  y  e.  S
)  /\  i  e.  NN0 )  ->  ( y  e.  S  |->  (  seq 0 (  +  , 
( G `  y
) ) `  i
) )  e.  _V )
21541fvmpt2 5972 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  NN0  /\  ( y  e.  S  |->  (  seq 0 (  +  ,  ( G `
 y ) ) `
 i ) )  e.  _V )  -> 
( H `  i
)  =  ( y  e.  S  |->  (  seq 0 (  +  , 
( G `  y
) ) `  i
) ) )
216211, 214, 215syl2anc 673 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  H ( ~~> u `  S ) f )  /\  y  e.  S
)  /\  i  e.  NN0 )  ->  ( H `  i )  =  ( y  e.  S  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) ) )
217216fveq1d 5881 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  H ( ~~> u `  S ) f )  /\  y  e.  S
)  /\  i  e.  NN0 )  ->  ( ( H `  i ) `  y )  =  ( ( y  e.  S  |->  (  seq 0 (  +  ,  ( G `
 y ) ) `
 i ) ) `
 y ) )
218 simplr 770 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  H ( ~~> u `  S ) f )  /\  y  e.  S
)  /\  i  e.  NN0 )  ->  y  e.  S )
219 fvex 5889 . . . . . . . . . . . . . . 15  |-  (  seq 0 (  +  , 
( G `  y
) ) `  i
)  e.  _V
22032fvmpt2 5972 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  S  /\  (  seq 0 (  +  ,  ( G `  y ) ) `  i )  e.  _V )  ->  ( ( y  e.  S  |->  (  seq 0 (  +  , 
( G `  y
) ) `  i
) ) `  y
)  =  (  seq 0 (  +  , 
( G `  y
) ) `  i
) )
221218, 219, 220sylancl 675 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  H ( ~~> u `  S ) f )  /\  y  e.  S
)  /\  i  e.  NN0 )  ->  ( (
y  e.  S  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) ) `  y )  =  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) )
222217, 221eqtrd 2505 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  H ( ~~> u `  S ) f )  /\  y  e.  S
)  /\  i  e.  NN0 )  ->  ( ( H `  i ) `  y )  =  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) )
223 simplr 770 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  H
( ~~> u `  S
) f )  /\  y  e.  S )  ->  H ( ~~> u `  S ) f )
22415, 203, 207, 208, 210, 222, 223ulmclm 23421 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  H
( ~~> u `  S
) f )  /\  y  e.  S )  ->  seq 0 (  +  ,  ( G `  y ) )  ~~>  ( f `
 y ) )
22515, 203, 204, 206, 224isumclim 13895 . . . . . . . . . . 11  |-  ( ( ( ph  /\  H
( ~~> u `  S
) f )  /\  y  e.  S )  -> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
)  =  ( f `
 y ) )
226225mpteq2dva 4482 . . . . . . . . . 10  |-  ( (
ph  /\  H ( ~~> u `  S )
f )  ->  (
y  e.  S  |->  sum_ j  e.  NN0  (
( G `  y
) `  j )
)  =  ( y  e.  S  |->  ( f `
 y ) ) )
22769, 226syl5eq 2517 . . . . . . . . 9  |-  ( (
ph  /\  H ( ~~> u `  S )
f )  ->  F  =  ( y  e.  S  |->  ( f `  y ) ) )
228202, 227eqtr4d 2508 . . . . . . . 8  |-  ( (
ph  /\  H ( ~~> u `  S )
f )  ->  f  =  F )
229199, 228breqtrd 4420 . . . . . . 7  |-  ( (
ph  /\  H ( ~~> u `  S )
f )  ->  H
( ~~> u `  S
) F )
230229ex 441 . . . . . 6  |-  ( ph  ->  ( H ( ~~> u `  S ) f  ->  H ( ~~> u `  S ) F ) )
231230exlimdv 1787 . . . . 5  |-  ( ph  ->  ( E. f  H ( ~~> u `  S
) f  ->  H
( ~~> u `  S
) F ) )
232198, 231syl5 32 . . . 4  |-  ( ph  ->  ( H  e.  dom  (
~~> u `  S )  ->  H ( ~~> u `  S ) F ) )
233232imp 436 . . 3  |-  ( (
ph  /\  H  e.  dom  ( ~~> u `  S
) )  ->  H
( ~~> u `  S
) F )
234196, 233syldan 478 . 2  |-  ( (
ph  /\  0  <_  M )  ->  H ( ~~> u `  S ) F )
235 0red 9662 . 2  |-  ( ph  ->  0  e.  RR )
23672, 234, 4, 235ltlecasei 9760 1  |-  ( ph  ->  H ( ~~> u `  S ) F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452   E.wex 1671    e. wcel 1904   A.wral 2756   {crab 2760   _Vcvv 3031    C_ wss 3390   (/)c0 3722   class class class wbr 4395    |-> cmpt 4454   `'ccnv 4838   dom cdm 4839   "cima 4842    o. ccom 4843    Fn wfn 5584   -->wf 5585   ` cfv 5589  (class class class)co 6308    oFcof 6548    ^m cmap 7490   supcsup 7972   CCcc 9555   RRcr 9556   0cc0 9557    + caddc 9560    x. cmul 9562   +oocpnf 9690   RR*cxr 9692    < clt 9693    <_ cle 9694   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   [,]cicc 11663   ...cfz 11810    seqcseq 12251   ^cexp 12310   abscabs 13374    ~~> cli 13625   sum_csu 13829   ~~> uculm 23410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ulm 23411
This theorem is referenced by:  psercn2  23457  pserdvlem2  23462
  Copyright terms: Public domain W3C validator