MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserdv2 Structured version   Unicode version

Theorem pserdv2 21914
Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
pserf.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
pserf.f  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
pserf.a  |-  ( ph  ->  A : NN0 --> CC )
pserf.r  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
psercn.s  |-  S  =  ( `' abs " (
0 [,) R ) )
psercn.m  |-  M  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )
pserdv.b  |-  B  =  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( ( abs `  a
)  +  M )  /  2 ) )
Assertion
Ref Expression
pserdv2  |-  ( ph  ->  ( CC  _D  F
)  =  ( y  e.  S  |->  sum_ k  e.  NN  ( ( k  x.  ( A `  k ) )  x.  ( y ^ (
k  -  1 ) ) ) ) )
Distinct variable groups:    j, a,
k, n, r, x, y, A    j, M, k, y    B, j, k, x, y    j, G, k, r, y    S, a, j, k, y    F, a    ph, a, j, k, y
Allowed substitution hints:    ph( x, n, r)    B( n, r, a)    R( x, y, j, k, n, r, a)    S( x, n, r)    F( x, y, j, k, n, r)    G( x, n, a)    M( x, n, r, a)

Proof of Theorem pserdv2
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 pserf.g . . 3  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
2 pserf.f . . 3  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
3 pserf.a . . 3  |-  ( ph  ->  A : NN0 --> CC )
4 pserf.r . . 3  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
5 psercn.s . . 3  |-  S  =  ( `' abs " (
0 [,) R ) )
6 psercn.m . . 3  |-  M  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )
7 pserdv.b . . 3  |-  B  =  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( ( abs `  a
)  +  M )  /  2 ) )
81, 2, 3, 4, 5, 6, 7pserdv 21913 . 2  |-  ( ph  ->  ( CC  _D  F
)  =  ( y  e.  S  |->  sum_ m  e.  NN0  ( ( ( m  +  1 )  x.  ( A `  ( m  +  1
) ) )  x.  ( y ^ m
) ) ) )
9 nn0uz 10914 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
10 nnuz 10915 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
11 1e0p1 10802 . . . . . . 7  |-  1  =  ( 0  +  1 )
1211fveq2i 5713 . . . . . 6  |-  ( ZZ>= ` 
1 )  =  (
ZZ>= `  ( 0  +  1 ) )
1310, 12eqtri 2463 . . . . 5  |-  NN  =  ( ZZ>= `  ( 0  +  1 ) )
14 id 22 . . . . . . 7  |-  ( k  =  ( 1  +  m )  ->  k  =  ( 1  +  m ) )
15 fveq2 5710 . . . . . . 7  |-  ( k  =  ( 1  +  m )  ->  ( A `  k )  =  ( A `  ( 1  +  m
) ) )
1614, 15oveq12d 6128 . . . . . 6  |-  ( k  =  ( 1  +  m )  ->  (
k  x.  ( A `
 k ) )  =  ( ( 1  +  m )  x.  ( A `  (
1  +  m ) ) ) )
17 oveq1 6117 . . . . . . 7  |-  ( k  =  ( 1  +  m )  ->  (
k  -  1 )  =  ( ( 1  +  m )  - 
1 ) )
1817oveq2d 6126 . . . . . 6  |-  ( k  =  ( 1  +  m )  ->  (
y ^ ( k  -  1 ) )  =  ( y ^
( ( 1  +  m )  -  1 ) ) )
1916, 18oveq12d 6128 . . . . 5  |-  ( k  =  ( 1  +  m )  ->  (
( k  x.  ( A `  k )
)  x.  ( y ^ ( k  - 
1 ) ) )  =  ( ( ( 1  +  m )  x.  ( A `  ( 1  +  m
) ) )  x.  ( y ^ (
( 1  +  m
)  -  1 ) ) ) )
20 1zzd 10696 . . . . 5  |-  ( (
ph  /\  y  e.  S )  ->  1  e.  ZZ )
21 0zd 10677 . . . . 5  |-  ( (
ph  /\  y  e.  S )  ->  0  e.  ZZ )
22 nncn 10349 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  CC )
2322adantl 466 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  S )  /\  k  e.  NN )  ->  k  e.  CC )
243adantr 465 . . . . . . . 8  |-  ( (
ph  /\  y  e.  S )  ->  A : NN0 --> CC )
25 nnnn0 10605 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  NN0 )
26 ffvelrn 5860 . . . . . . . 8  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
2724, 25, 26syl2an 477 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  S )  /\  k  e.  NN )  ->  ( A `  k )  e.  CC )
2823, 27mulcld 9425 . . . . . 6  |-  ( ( ( ph  /\  y  e.  S )  /\  k  e.  NN )  ->  (
k  x.  ( A `
 k ) )  e.  CC )
29 cnvimass 5208 . . . . . . . . . . 11  |-  ( `' abs " ( 0 [,) R ) ) 
C_  dom  abs
30 absf 12844 . . . . . . . . . . . 12  |-  abs : CC
--> RR
3130fdmi 5583 . . . . . . . . . . 11  |-  dom  abs  =  CC
3229, 31sseqtri 3407 . . . . . . . . . 10  |-  ( `' abs " ( 0 [,) R ) ) 
C_  CC
335, 32eqsstri 3405 . . . . . . . . 9  |-  S  C_  CC
3433a1i 11 . . . . . . . 8  |-  ( ph  ->  S  C_  CC )
3534sselda 3375 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  y  e.  CC )
36 nnm1nn0 10640 . . . . . . 7  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
37 expcl 11902 . . . . . . 7  |-  ( ( y  e.  CC  /\  ( k  -  1 )  e.  NN0 )  ->  ( y ^ (
k  -  1 ) )  e.  CC )
3835, 36, 37syl2an 477 . . . . . 6  |-  ( ( ( ph  /\  y  e.  S )  /\  k  e.  NN )  ->  (
y ^ ( k  -  1 ) )  e.  CC )
3928, 38mulcld 9425 . . . . 5  |-  ( ( ( ph  /\  y  e.  S )  /\  k  e.  NN )  ->  (
( k  x.  ( A `  k )
)  x.  ( y ^ ( k  - 
1 ) ) )  e.  CC )
409, 13, 19, 20, 21, 39isumshft 13321 . . . 4  |-  ( (
ph  /\  y  e.  S )  ->  sum_ k  e.  NN  ( ( k  x.  ( A `  k ) )  x.  ( y ^ (
k  -  1 ) ) )  =  sum_ m  e.  NN0  ( (
( 1  +  m
)  x.  ( A `
 ( 1  +  m ) ) )  x.  ( y ^
( ( 1  +  m )  -  1 ) ) ) )
41 ax-1cn 9359 . . . . . . . 8  |-  1  e.  CC
42 nn0cn 10608 . . . . . . . . 9  |-  ( m  e.  NN0  ->  m  e.  CC )
4342adantl 466 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  S )  /\  m  e.  NN0 )  ->  m  e.  CC )
44 addcom 9574 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  m  e.  CC )  ->  ( 1  +  m
)  =  ( m  +  1 ) )
4541, 43, 44sylancr 663 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  S )  /\  m  e.  NN0 )  ->  (
1  +  m )  =  ( m  + 
1 ) )
4645fveq2d 5714 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  S )  /\  m  e.  NN0 )  ->  ( A `  ( 1  +  m ) )  =  ( A `  (
m  +  1 ) ) )
4745, 46oveq12d 6128 . . . . . 6  |-  ( ( ( ph  /\  y  e.  S )  /\  m  e.  NN0 )  ->  (
( 1  +  m
)  x.  ( A `
 ( 1  +  m ) ) )  =  ( ( m  +  1 )  x.  ( A `  (
m  +  1 ) ) ) )
48 pncan2 9636 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  m  e.  CC )  ->  ( ( 1  +  m )  -  1 )  =  m )
4941, 43, 48sylancr 663 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  S )  /\  m  e.  NN0 )  ->  (
( 1  +  m
)  -  1 )  =  m )
5049oveq2d 6126 . . . . . 6  |-  ( ( ( ph  /\  y  e.  S )  /\  m  e.  NN0 )  ->  (
y ^ ( ( 1  +  m )  -  1 ) )  =  ( y ^
m ) )
5147, 50oveq12d 6128 . . . . 5  |-  ( ( ( ph  /\  y  e.  S )  /\  m  e.  NN0 )  ->  (
( ( 1  +  m )  x.  ( A `  ( 1  +  m ) ) )  x.  ( y ^
( ( 1  +  m )  -  1 ) ) )  =  ( ( ( m  +  1 )  x.  ( A `  (
m  +  1 ) ) )  x.  (
y ^ m ) ) )
5251sumeq2dv 13199 . . . 4  |-  ( (
ph  /\  y  e.  S )  ->  sum_ m  e.  NN0  ( ( ( 1  +  m )  x.  ( A `  ( 1  +  m
) ) )  x.  ( y ^ (
( 1  +  m
)  -  1 ) ) )  =  sum_ m  e.  NN0  ( (
( m  +  1 )  x.  ( A `
 ( m  + 
1 ) ) )  x.  ( y ^
m ) ) )
5340, 52eqtr2d 2476 . . 3  |-  ( (
ph  /\  y  e.  S )  ->  sum_ m  e.  NN0  ( ( ( m  +  1 )  x.  ( A `  ( m  +  1
) ) )  x.  ( y ^ m
) )  =  sum_ k  e.  NN  (
( k  x.  ( A `  k )
)  x.  ( y ^ ( k  - 
1 ) ) ) )
5453mpteq2dva 4397 . 2  |-  ( ph  ->  ( y  e.  S  |-> 
sum_ m  e.  NN0  ( ( ( m  +  1 )  x.  ( A `  (
m  +  1 ) ) )  x.  (
y ^ m ) ) )  =  ( y  e.  S  |->  sum_ k  e.  NN  (
( k  x.  ( A `  k )
)  x.  ( y ^ ( k  - 
1 ) ) ) ) )
558, 54eqtrd 2475 1  |-  ( ph  ->  ( CC  _D  F
)  =  ( y  e.  S  |->  sum_ k  e.  NN  ( ( k  x.  ( A `  k ) )  x.  ( y ^ (
k  -  1 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   {crab 2738    C_ wss 3347   ifcif 3810    e. cmpt 4369   `'ccnv 4858   dom cdm 4859   "cima 4862    o. ccom 4863   -->wf 5433   ` cfv 5437  (class class class)co 6110   supcsup 7709   CCcc 9299   RRcr 9300   0cc0 9301   1c1 9302    + caddc 9304    x. cmul 9306   RR*cxr 9436    < clt 9437    - cmin 9614    / cdiv 10012   NNcn 10341   2c2 10390   NN0cn0 10598   ZZ>=cuz 10880   [,)cico 11321    seqcseq 11825   ^cexp 11884   abscabs 12742    ~~> cli 12981   sum_csu 13182   ballcbl 17822    _D cdv 21357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4422  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391  ax-inf2 7866  ax-cnex 9357  ax-resscn 9358  ax-1cn 9359  ax-icn 9360  ax-addcl 9361  ax-addrcl 9362  ax-mulcl 9363  ax-mulrcl 9364  ax-mulcom 9365  ax-addass 9366  ax-mulass 9367  ax-distr 9368  ax-i2m1 9369  ax-1ne0 9370  ax-1rid 9371  ax-rnegex 9372  ax-rrecex 9373  ax-cnre 9374  ax-pre-lttri 9375  ax-pre-lttrn 9376  ax-pre-ltadd 9377  ax-pre-mulgt0 9378  ax-pre-sup 9379  ax-addf 9380  ax-mulf 9381
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2739  df-rex 2740  df-reu 2741  df-rmo 2742  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-pss 3363  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-tp 3901  df-op 3903  df-uni 4111  df-int 4148  df-iun 4192  df-iin 4193  df-br 4312  df-opab 4370  df-mpt 4371  df-tr 4405  df-eprel 4651  df-id 4655  df-po 4660  df-so 4661  df-fr 4698  df-se 4699  df-we 4700  df-ord 4741  df-on 4742  df-lim 4743  df-suc 4744  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-f1 5442  df-fo 5443  df-f1o 5444  df-fv 5445  df-isom 5446  df-riota 6071  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-of 6339  df-om 6496  df-1st 6596  df-2nd 6597  df-supp 6710  df-recs 6851  df-rdg 6885  df-1o 6939  df-2o 6940  df-oadd 6943  df-er 7120  df-map 7235  df-pm 7236  df-ixp 7283  df-en 7330  df-dom 7331  df-sdom 7332  df-fin 7333  df-fsupp 7640  df-fi 7680  df-sup 7710  df-oi 7743  df-card 8128  df-cda 8356  df-pnf 9439  df-mnf 9440  df-xr 9441  df-ltxr 9442  df-le 9443  df-sub 9616  df-neg 9617  df-div 10013  df-nn 10342  df-2 10399  df-3 10400  df-4 10401  df-5 10402  df-6 10403  df-7 10404  df-8 10405  df-9 10406  df-10 10407  df-n0 10599  df-z 10666  df-dec 10775  df-uz 10881  df-q 10973  df-rp 11011  df-xneg 11108  df-xadd 11109  df-xmul 11110  df-ioo 11323  df-ico 11325  df-icc 11326  df-fz 11457  df-fzo 11568  df-fl 11661  df-seq 11826  df-exp 11885  df-hash 12123  df-shft 12575  df-cj 12607  df-re 12608  df-im 12609  df-sqr 12743  df-abs 12744  df-limsup 12968  df-clim 12985  df-rlim 12986  df-sum 13183  df-struct 14195  df-ndx 14196  df-slot 14197  df-base 14198  df-sets 14199  df-ress 14200  df-plusg 14270  df-mulr 14271  df-starv 14272  df-sca 14273  df-vsca 14274  df-ip 14275  df-tset 14276  df-ple 14277  df-ds 14279  df-unif 14280  df-hom 14281  df-cco 14282  df-rest 14380  df-topn 14381  df-0g 14399  df-gsum 14400  df-topgen 14401  df-pt 14402  df-prds 14405  df-xrs 14459  df-qtop 14464  df-imas 14465  df-xps 14467  df-mre 14543  df-mrc 14544  df-acs 14546  df-mnd 15434  df-submnd 15484  df-mulg 15567  df-cntz 15854  df-cmn 16298  df-psmet 17828  df-xmet 17829  df-met 17830  df-bl 17831  df-mopn 17832  df-fbas 17833  df-fg 17834  df-cnfld 17838  df-top 18522  df-bases 18524  df-topon 18525  df-topsp 18526  df-cld 18642  df-ntr 18643  df-cls 18644  df-nei 18721  df-lp 18759  df-perf 18760  df-cn 18850  df-cnp 18851  df-haus 18938  df-cmp 19009  df-tx 19154  df-hmeo 19347  df-fil 19438  df-fm 19530  df-flim 19531  df-flf 19532  df-xms 19914  df-ms 19915  df-tms 19916  df-cncf 20473  df-limc 21360  df-dv 21361  df-ulm 21861
This theorem is referenced by:  logtayl  22124
  Copyright terms: Public domain W3C validator